Representation and Construction of Intuitionistic Fuzzy -Preorders and Fuzzy Weak -Orders
Discussiones Mathematicae. General Algebra and Applications, Tome 41 (2021) no. 1, pp. 81-101.

Voir la notice de l'article provenant de la source Library of Science

In this paper, we consider the problem of representation and construction of intuitionistic fuzzy preorders and weak orders, where many fundamental representation results extending those of Ulrich Bodenhofer et al. are presented.
Keywords: intuitionistic fuzzy set, intuitionistic fuzzy ordering relation, intuitionistic fuzzy equivalence relation, intuitionistic fuzzy weak order, intuitionistic fuzzy t-norm, residuated lattice
@article{DMGAA_2021_41_1_a7,
     author = {Ziane, Brahim and Amroune, Abdelaziz},
     title = {Representation and {Construction} of {Intuitionistic} {Fuzzy}  {-Preorders} and {Fuzzy} {Weak}  {-Orders}},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {81--101},
     publisher = {mathdoc},
     volume = {41},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2021_41_1_a7/}
}
TY  - JOUR
AU  - Ziane, Brahim
AU  - Amroune, Abdelaziz
TI  - Representation and Construction of Intuitionistic Fuzzy  -Preorders and Fuzzy Weak  -Orders
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2021
SP  - 81
EP  - 101
VL  - 41
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2021_41_1_a7/
LA  - en
ID  - DMGAA_2021_41_1_a7
ER  - 
%0 Journal Article
%A Ziane, Brahim
%A Amroune, Abdelaziz
%T Representation and Construction of Intuitionistic Fuzzy  -Preorders and Fuzzy Weak  -Orders
%J Discussiones Mathematicae. General Algebra and Applications
%D 2021
%P 81-101
%V 41
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2021_41_1_a7/
%G en
%F DMGAA_2021_41_1_a7
Ziane, Brahim; Amroune, Abdelaziz. Representation and Construction of Intuitionistic Fuzzy  -Preorders and Fuzzy Weak  -Orders. Discussiones Mathematicae. General Algebra and Applications, Tome 41 (2021) no. 1, pp. 81-101. http://geodesic.mathdoc.fr/item/DMGAA_2021_41_1_a7/

[1] K.T. Atanassov, Intuitionistic fuzzy sets vii itkr’s session, Sofia 1 (1983) 983.

[2] K.T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 1 (1986) 87–96. doi:10.1016/S0165-0114(86)80034-3

[3] U. Bodenhofer, B. De Baets and J. Fodor, A compendium of fuzzy weak orders: Representations and constructions, Fuzzy Sets and Systems 158 (2007) 811–829. doi:10.1016/j.fss.2006.10.005

[4] P. Burillo, J. Pedro and H. Bustince, Intuitionistic fuzzy relations (part i), Mathware and Soft Computing 2 (1995) 5–38.

[5] H. Bustince and P. Burillo, Intuitionistic fuzzy relations (part ii), Mathware and Soft Computing 2 (1995) 117–148.

[6] C. Cornelis, M. De Cock and E.E. Kerre, Intuitionistic fuzzy rough sets: at the crossroads of imperfect knowledge, Expert Systems 20 (2003) 260–270. doi:10.1111/1468-0394.00250

[7] C. Cornelis, G. Deschrijver and E.E. Kerre, Classification of intuitionistic fuzzy implicators: An algebraic approach, In JCIS (2002) 105–108.

[8] C. Cornelis, G. Deschrijver and E.E. Kerre, Implication in intuitionistic fuzzy and interval-valued fuzzy set theory: construction, classification, application, Int. J. Approximate Reasoning 35 (2004) 55–95. doi:10.1016/S0888-613X(03)00072-0

[9] G. Deschrijver, C. Cornelis and E.E. Kerre, On the representation of intuitionistic fuzzy t-norms and t-conorms, IEEE Transactions on Fuzzy Systems 12 (2004) 45–61. doi:10.1109/TFUZZ.2003.822678

[10] G. Deschrijver and E.E. Kerre, Classes of intuitionistic fuzzy t-norms satisfying the residuation principle, Int. J. Uncertainty, Fuzziness and Knowledge-Based Systems 11 (2003) 691–709. doi:10.1142/S021848850300248X

[11] G. Deschrijver and E.E. Kerre, On the relationship between some extensions of fuzzy set theory, Fuzzy Sets and Systems 133 (2003) 227–235. doi:10.1016/S0165-0114(02)00127-6

[12] P. Hájek, Metamathematics of Fuzzy Logic, Trends in Logic Studia Logica Library 4 (Kluwer Academic Publishers, Dordrecht, 1998). doi:10.1007/978-94-011-5300-3

[13] E.P. Klement and R. Mesiar, Logical, Algebraic, Analytic and Probabilistic Aspects of Triangular Norms (Elsevier, 2005). doi:10.1007/978-94-015-9540-7

[14] E.P. Klement, R. Mesiar and E. Pap, Triangular Norms 8 (Springer Science and Business Media, 2013).

[15] D. Piciu, Algebras of fuzzy logic, Univ. Craiova Publ. House, Craiova (Romania, 2007). doi:10.1155/2012/763428

[16] L.A. Zadeh, Fuzzy sets, information and control, 8 (1965) 338–353. doi:10.1016/S0019-9958(65)90241-X

[17] X. Zhang, B. Zhou and P. Li, A general frame for intuitionistic fuzzy rough sets, Inform. Sci. 216 (2012) 34–49. doi:10.1016/j.ins.2012.04.018