Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2021_41_1_a7, author = {Ziane, Brahim and Amroune, Abdelaziz}, title = {Representation and {Construction} of {Intuitionistic} {Fuzzy} {-Preorders} and {Fuzzy} {Weak} {-Orders}}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {81--101}, publisher = {mathdoc}, volume = {41}, number = {1}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2021_41_1_a7/} }
TY - JOUR AU - Ziane, Brahim AU - Amroune, Abdelaziz TI - Representation and Construction of Intuitionistic Fuzzy -Preorders and Fuzzy Weak -Orders JO - Discussiones Mathematicae. General Algebra and Applications PY - 2021 SP - 81 EP - 101 VL - 41 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2021_41_1_a7/ LA - en ID - DMGAA_2021_41_1_a7 ER -
%0 Journal Article %A Ziane, Brahim %A Amroune, Abdelaziz %T Representation and Construction of Intuitionistic Fuzzy -Preorders and Fuzzy Weak -Orders %J Discussiones Mathematicae. General Algebra and Applications %D 2021 %P 81-101 %V 41 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGAA_2021_41_1_a7/ %G en %F DMGAA_2021_41_1_a7
Ziane, Brahim; Amroune, Abdelaziz. Representation and Construction of Intuitionistic Fuzzy -Preorders and Fuzzy Weak -Orders. Discussiones Mathematicae. General Algebra and Applications, Tome 41 (2021) no. 1, pp. 81-101. http://geodesic.mathdoc.fr/item/DMGAA_2021_41_1_a7/
[1] K.T. Atanassov, Intuitionistic fuzzy sets vii itkr’s session, Sofia 1 (1983) 983.
[2] K.T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 1 (1986) 87–96. doi:10.1016/S0165-0114(86)80034-3
[3] U. Bodenhofer, B. De Baets and J. Fodor, A compendium of fuzzy weak orders: Representations and constructions, Fuzzy Sets and Systems 158 (2007) 811–829. doi:10.1016/j.fss.2006.10.005
[4] P. Burillo, J. Pedro and H. Bustince, Intuitionistic fuzzy relations (part i), Mathware and Soft Computing 2 (1995) 5–38.
[5] H. Bustince and P. Burillo, Intuitionistic fuzzy relations (part ii), Mathware and Soft Computing 2 (1995) 117–148.
[6] C. Cornelis, M. De Cock and E.E. Kerre, Intuitionistic fuzzy rough sets: at the crossroads of imperfect knowledge, Expert Systems 20 (2003) 260–270. doi:10.1111/1468-0394.00250
[7] C. Cornelis, G. Deschrijver and E.E. Kerre, Classification of intuitionistic fuzzy implicators: An algebraic approach, In JCIS (2002) 105–108.
[8] C. Cornelis, G. Deschrijver and E.E. Kerre, Implication in intuitionistic fuzzy and interval-valued fuzzy set theory: construction, classification, application, Int. J. Approximate Reasoning 35 (2004) 55–95. doi:10.1016/S0888-613X(03)00072-0
[9] G. Deschrijver, C. Cornelis and E.E. Kerre, On the representation of intuitionistic fuzzy t-norms and t-conorms, IEEE Transactions on Fuzzy Systems 12 (2004) 45–61. doi:10.1109/TFUZZ.2003.822678
[10] G. Deschrijver and E.E. Kerre, Classes of intuitionistic fuzzy t-norms satisfying the residuation principle, Int. J. Uncertainty, Fuzziness and Knowledge-Based Systems 11 (2003) 691–709. doi:10.1142/S021848850300248X
[11] G. Deschrijver and E.E. Kerre, On the relationship between some extensions of fuzzy set theory, Fuzzy Sets and Systems 133 (2003) 227–235. doi:10.1016/S0165-0114(02)00127-6
[12] P. Hájek, Metamathematics of Fuzzy Logic, Trends in Logic Studia Logica Library 4 (Kluwer Academic Publishers, Dordrecht, 1998). doi:10.1007/978-94-011-5300-3
[13] E.P. Klement and R. Mesiar, Logical, Algebraic, Analytic and Probabilistic Aspects of Triangular Norms (Elsevier, 2005). doi:10.1007/978-94-015-9540-7
[14] E.P. Klement, R. Mesiar and E. Pap, Triangular Norms 8 (Springer Science and Business Media, 2013).
[15] D. Piciu, Algebras of fuzzy logic, Univ. Craiova Publ. House, Craiova (Romania, 2007). doi:10.1155/2012/763428
[16] L.A. Zadeh, Fuzzy sets, information and control, 8 (1965) 338–353. doi:10.1016/S0019-9958(65)90241-X
[17] X. Zhang, B. Zhou and P. Li, A general frame for intuitionistic fuzzy rough sets, Inform. Sci. 216 (2012) 34–49. doi:10.1016/j.ins.2012.04.018