Left Annihilator of Identities with Generalized Derivations in Prime and Semiprime Rings
Discussiones Mathematicae. General Algebra and Applications, Tome 41 (2021) no. 1, pp. 69-79

Voir la notice de l'article provenant de la source Library of Science

Let R be a noncommutative prime ring of char (R) ≠ 2, F a generalized derivation of R associated to the derivation d of R and I a nonzero ideal of R. Let S ⊆ R. The left annihilator of S in R is denoted by lR(S) and defined by lR (S) = x ∈ R | xS = 0. In the present paper, we study the left annihilator of the sets F(x) ◦n F(y)−x ◦n y | x, y ∈ I and F(x) ◦n F(y)−d(x ◦n y) | x, y ∈ I.
Keywords: prime ring, derivation, generalized derivation, extended centroid, Utumi quotient ring
@article{DMGAA_2021_41_1_a6,
     author = {Rahaman, Md Hamidur},
     title = {Left {Annihilator} of {Identities} with {Generalized} {Derivations} in {Prime} and {Semiprime} {Rings}},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {69--79},
     publisher = {mathdoc},
     volume = {41},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2021_41_1_a6/}
}
TY  - JOUR
AU  - Rahaman, Md Hamidur
TI  - Left Annihilator of Identities with Generalized Derivations in Prime and Semiprime Rings
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2021
SP  - 69
EP  - 79
VL  - 41
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2021_41_1_a6/
LA  - en
ID  - DMGAA_2021_41_1_a6
ER  - 
%0 Journal Article
%A Rahaman, Md Hamidur
%T Left Annihilator of Identities with Generalized Derivations in Prime and Semiprime Rings
%J Discussiones Mathematicae. General Algebra and Applications
%D 2021
%P 69-79
%V 41
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2021_41_1_a6/
%G en
%F DMGAA_2021_41_1_a6
Rahaman, Md Hamidur. Left Annihilator of Identities with Generalized Derivations in Prime and Semiprime Rings. Discussiones Mathematicae. General Algebra and Applications, Tome 41 (2021) no. 1, pp. 69-79. http://geodesic.mathdoc.fr/item/DMGAA_2021_41_1_a6/