All Maximal Idempotent Submonoids of Generalized Cohypersubstitutions of Type τ = (2)
Discussiones Mathematicae. General Algebra and Applications, Tome 41 (2021) no. 1, pp. 45-54.

Voir la notice de l'article provenant de la source Library of Science

A generalized cohypersubstitution of type τ is a mapping σ which maps every n_i-ary cooperation symbol f_i to the coterm σ(f) of type τ = (n_i)_i∈I. Denote by Cohyp_G(τ) the set of all generalized cohypersubstitutions of type τ. Define the binary operation ∘_CG on Cohyp_G(τ) by σ_1∘_CGσ_2:= σ_1^∘σ_2 for all σ_1, σ_2 ∈ Cohyp_G(τ) and σ_id(f_i) := f_i for all i ∈ I. Then Cohyp_G(τ) := {Cohyp_G(τ), ∘_CG, σ_id} is a monoid. In [5], the monoid Cohyp_G(2) was studied. They characterized and presented the idempotent and regular elements of this monoid. In this present paper, we consider the set of all idempotent elements of the monoid Cohyp_G(2) and determine all maximal idempotent submonoids of this monoid.
Keywords: generalized cohypersubstitutions, idempotent submonoids, maximal submonoids
@article{DMGAA_2021_41_1_a4,
     author = {Chansuriya, Nagornchat},
     title = {All {Maximal} {Idempotent} {Submonoids} of {Generalized} {Cohypersubstitutions} of {Type} \ensuremath{\tau} = (2)},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {45--54},
     publisher = {mathdoc},
     volume = {41},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2021_41_1_a4/}
}
TY  - JOUR
AU  - Chansuriya, Nagornchat
TI  - All Maximal Idempotent Submonoids of Generalized Cohypersubstitutions of Type τ = (2)
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2021
SP  - 45
EP  - 54
VL  - 41
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2021_41_1_a4/
LA  - en
ID  - DMGAA_2021_41_1_a4
ER  - 
%0 Journal Article
%A Chansuriya, Nagornchat
%T All Maximal Idempotent Submonoids of Generalized Cohypersubstitutions of Type τ = (2)
%J Discussiones Mathematicae. General Algebra and Applications
%D 2021
%P 45-54
%V 41
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2021_41_1_a4/
%G en
%F DMGAA_2021_41_1_a4
Chansuriya, Nagornchat. All Maximal Idempotent Submonoids of Generalized Cohypersubstitutions of Type τ = (2). Discussiones Mathematicae. General Algebra and Applications, Tome 41 (2021) no. 1, pp. 45-54. http://geodesic.mathdoc.fr/item/DMGAA_2021_41_1_a4/

[1] K. Denecke and K. Saengsura, Separation of clones of cooperations by cohyperidentities, Discrete Math. 309 (2009) 772–783. doi:10.1016/j.dise.2008.01.043

[2] K. Denecke and S.L. Wismath, Universal Algebra and Coalgebra (World Scientific Publishing Co. Pte. Ltd., Singapore, 2009).

[3] S. Jermjitpornchai and N. Saengsura, Generalized Cohypersubstitutions of Type τ = (ni)i∈I, Internat. J. Pure and Appl. Math. 86 (2013) 745–755. doi:10.12732/ijpam.v86i4.12

[4] P. Kunama and S. Leeratanavelee, All Maximal Completely Regular submonoids of HypG(2), Discuss. Math. Gen. Alg. and Appl. 37 (2017) 105–114. doi:10.7151/dmgaa.1263

[5] N. Saengsura and S. Jermjitpornchai, Idempotent and Regular Generalized Cohyper-substitutions of Type τ = (2), Internat. J. Pure and Appl. Math. 86 (2013) 757–766. doi:10.12732/ijpam.v86i4.13

[6] W. Wongpinit and S. Leeratanavelee, All Maximal idempotent submonoids of HypG(2), Acta Univ. Sapientiae Math. 7 (2015) 106–113. doi:10.1515/ausm-2015-0007

[7] W. Wongpinit and S. Leeratanavelee, All Maximal idempotent submonoids of HypG(n), Surveys in Mathematics and Its Applications 10 (2015) 41–48.