Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2021_41_1_a4, author = {Chansuriya, Nagornchat}, title = {All {Maximal} {Idempotent} {Submonoids} of {Generalized} {Cohypersubstitutions} of {Type} \ensuremath{\tau} = (2)}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {45--54}, publisher = {mathdoc}, volume = {41}, number = {1}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2021_41_1_a4/} }
TY - JOUR AU - Chansuriya, Nagornchat TI - All Maximal Idempotent Submonoids of Generalized Cohypersubstitutions of Type τ = (2) JO - Discussiones Mathematicae. General Algebra and Applications PY - 2021 SP - 45 EP - 54 VL - 41 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2021_41_1_a4/ LA - en ID - DMGAA_2021_41_1_a4 ER -
%0 Journal Article %A Chansuriya, Nagornchat %T All Maximal Idempotent Submonoids of Generalized Cohypersubstitutions of Type τ = (2) %J Discussiones Mathematicae. General Algebra and Applications %D 2021 %P 45-54 %V 41 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGAA_2021_41_1_a4/ %G en %F DMGAA_2021_41_1_a4
Chansuriya, Nagornchat. All Maximal Idempotent Submonoids of Generalized Cohypersubstitutions of Type τ = (2). Discussiones Mathematicae. General Algebra and Applications, Tome 41 (2021) no. 1, pp. 45-54. http://geodesic.mathdoc.fr/item/DMGAA_2021_41_1_a4/
[1] K. Denecke and K. Saengsura, Separation of clones of cooperations by cohyperidentities, Discrete Math. 309 (2009) 772–783. doi:10.1016/j.dise.2008.01.043
[2] K. Denecke and S.L. Wismath, Universal Algebra and Coalgebra (World Scientific Publishing Co. Pte. Ltd., Singapore, 2009).
[3] S. Jermjitpornchai and N. Saengsura, Generalized Cohypersubstitutions of Type τ = (ni)i∈I, Internat. J. Pure and Appl. Math. 86 (2013) 745–755. doi:10.12732/ijpam.v86i4.12
[4] P. Kunama and S. Leeratanavelee, All Maximal Completely Regular submonoids of HypG(2), Discuss. Math. Gen. Alg. and Appl. 37 (2017) 105–114. doi:10.7151/dmgaa.1263
[5] N. Saengsura and S. Jermjitpornchai, Idempotent and Regular Generalized Cohyper-substitutions of Type τ = (2), Internat. J. Pure and Appl. Math. 86 (2013) 757–766. doi:10.12732/ijpam.v86i4.13
[6] W. Wongpinit and S. Leeratanavelee, All Maximal idempotent submonoids of HypG(2), Acta Univ. Sapientiae Math. 7 (2015) 106–113. doi:10.1515/ausm-2015-0007
[7] W. Wongpinit and S. Leeratanavelee, All Maximal idempotent submonoids of HypG(n), Surveys in Mathematics and Its Applications 10 (2015) 41–48.