Tri-Quasi Ideals of Γ-Semirings
Discussiones Mathematicae. General Algebra and Applications, Tome 41 (2021) no. 1, pp. 33-44.

Voir la notice de l'article provenant de la source Library of Science

In this paper, as a further generalization of ideals, we introduce the notion of tri-quasi ideal as a generalization of ideal, left ideal, right ideal, bi-ideal, quasi ideal, interior ideal, bi-interior ideal, weak interior ideal, bi-quasi ideal, tri-ideal, quasi-interior ideal and bi-quasi-interior ideal of Γ-semiring. Some charecterizations of Γ-semiring,regular Γ-semiring and simple Γ-semiring using tri-quasi ideals are given and study the properties of tri-quasi ideals of Γ-semiring.
Keywords: bi-quasi-interior ideal, bi-interior ideal, bi-quasi ideal, bi-ideal, quasi ideal, interior ideal, regular Γ-semiring, tri-quasi simple Γ-semiring
@article{DMGAA_2021_41_1_a3,
     author = {Rao, Marapureddy Murali Krishna},
     title = {Tri-Quasi {Ideals} of {\ensuremath{\Gamma}-Semirings}},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {33--44},
     publisher = {mathdoc},
     volume = {41},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2021_41_1_a3/}
}
TY  - JOUR
AU  - Rao, Marapureddy Murali Krishna
TI  - Tri-Quasi Ideals of Γ-Semirings
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2021
SP  - 33
EP  - 44
VL  - 41
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2021_41_1_a3/
LA  - en
ID  - DMGAA_2021_41_1_a3
ER  - 
%0 Journal Article
%A Rao, Marapureddy Murali Krishna
%T Tri-Quasi Ideals of Γ-Semirings
%J Discussiones Mathematicae. General Algebra and Applications
%D 2021
%P 33-44
%V 41
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2021_41_1_a3/
%G en
%F DMGAA_2021_41_1_a3
Rao, Marapureddy Murali Krishna. Tri-Quasi Ideals of Γ-Semirings. Discussiones Mathematicae. General Algebra and Applications, Tome 41 (2021) no. 1, pp. 33-44. http://geodesic.mathdoc.fr/item/DMGAA_2021_41_1_a3/

[1] R.A. Good and D.R. Hughes, Associated groups for a semigroup, Bull. Amer. Math. Soc. 58 (1952) 624–625.

[2] M. Henriksen, Ideals in semirings with commutative addition, Amer. Math. Soc. Noti. 5 (1958) 321.

[3] K. Iseki, Quasi-ideals in semirings without zero, Proc. Japan Acad. 34 (1958) 79–84. doi:10.3792/pja/1195524783

[4] S. Lajos and F.A. Szasz, On the bi-ideals in associative ring, Proc. Japan Acad. 46 (1970) 505–507.

[5] S. Lajos, (m; k; n)-ideals in semigroups, in: Notes on Semigroups II, Karl Marx Univ. Econ., Dept. Math. (Budapest, 1976), No. 1, 12–19.

[6] M. Murali Krishna Rao, Γ-semirings-I, Southeast Asian Bull. Math. 19 (1995) 49–54.

[7] M. Murali Krishna Rao, Γ-semiring with identity, Discuss. Math. Gen. Alg. and Appl. 37 (2017) 189–207. doi:10.7151/dmgaa.1276

[8] M. Murali Krishna Rao, Ideals in ordered Γ-semirings, Discuss. Math. Gen. Alg. and Appl. 38 (2018) 47–68. doi:10.7151/dmgaa.1284

[9] M. Murali Krishna Rao, Bi-interior ideals in semigroups, Discuss. Math. Gen. Alg. and Appl. 38 (2018) 69–78. doi:10.7151/dmgaa.1284

[10] M. Murali Krishna Rao, Left bi-quasi ideals of semirings, Bull. Int. Math. Virtual Inst. 8 (2018) 45–53. doi:10.7251/BIMVI1801045R

[11] Marapureddy Murali Krishna Rao, A study of bi-quasi interior ideal as a new generalization of ideal of generalization of semiring, Bull. Int. Math. Virtual Inst. 8 (2018) 519–535. doi:10.7251/BIMVI180X445Y

[12] M.Murali Krishna Rao, Quasi-interior ideals of semirings, Bull. Int. Math. Virtual Inst. 9 (2018) 231–242. doi:10.7251/BIMVI1902287M

[13] M. Murali Krishna Rao, A study of generalization of bi-ideal, quasi-ideal and interior ideal of semigroup, Math. Morovica 22 (2018) 103–115.

[14] N. Nobusawa, On a generalization of the ring theory, Osaka. J. Math. 1 (1964) 81–89.

[15] M.K. Sen, On Γ-semigroup, Proc. of International Conference of algebra and its application, (Decker Publicaiton, New York, 1981) 301–308.

[16] O. Steinfeld, Uher die quasi ideals, Von halbgruppend, Publ. Math. Debrecen 4 (1956) 262–275.

[17] H.S. Vandiver, Note on a simple type of algebra in which cancellation law of addition does not hold, Bull. Amer. Math. Soc. (N.S.) 40 (1934) 914–920.