Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2021_41_1_a3, author = {Rao, Marapureddy Murali Krishna}, title = {Tri-Quasi {Ideals} of {\ensuremath{\Gamma}-Semirings}}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {33--44}, publisher = {mathdoc}, volume = {41}, number = {1}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2021_41_1_a3/} }
Rao, Marapureddy Murali Krishna. Tri-Quasi Ideals of Γ-Semirings. Discussiones Mathematicae. General Algebra and Applications, Tome 41 (2021) no. 1, pp. 33-44. http://geodesic.mathdoc.fr/item/DMGAA_2021_41_1_a3/
[1] R.A. Good and D.R. Hughes, Associated groups for a semigroup, Bull. Amer. Math. Soc. 58 (1952) 624–625.
[2] M. Henriksen, Ideals in semirings with commutative addition, Amer. Math. Soc. Noti. 5 (1958) 321.
[3] K. Iseki, Quasi-ideals in semirings without zero, Proc. Japan Acad. 34 (1958) 79–84. doi:10.3792/pja/1195524783
[4] S. Lajos and F.A. Szasz, On the bi-ideals in associative ring, Proc. Japan Acad. 46 (1970) 505–507.
[5] S. Lajos, (m; k; n)-ideals in semigroups, in: Notes on Semigroups II, Karl Marx Univ. Econ., Dept. Math. (Budapest, 1976), No. 1, 12–19.
[6] M. Murali Krishna Rao, Γ-semirings-I, Southeast Asian Bull. Math. 19 (1995) 49–54.
[7] M. Murali Krishna Rao, Γ-semiring with identity, Discuss. Math. Gen. Alg. and Appl. 37 (2017) 189–207. doi:10.7151/dmgaa.1276
[8] M. Murali Krishna Rao, Ideals in ordered Γ-semirings, Discuss. Math. Gen. Alg. and Appl. 38 (2018) 47–68. doi:10.7151/dmgaa.1284
[9] M. Murali Krishna Rao, Bi-interior ideals in semigroups, Discuss. Math. Gen. Alg. and Appl. 38 (2018) 69–78. doi:10.7151/dmgaa.1284
[10] M. Murali Krishna Rao, Left bi-quasi ideals of semirings, Bull. Int. Math. Virtual Inst. 8 (2018) 45–53. doi:10.7251/BIMVI1801045R
[11] Marapureddy Murali Krishna Rao, A study of bi-quasi interior ideal as a new generalization of ideal of generalization of semiring, Bull. Int. Math. Virtual Inst. 8 (2018) 519–535. doi:10.7251/BIMVI180X445Y
[12] M.Murali Krishna Rao, Quasi-interior ideals of semirings, Bull. Int. Math. Virtual Inst. 9 (2018) 231–242. doi:10.7251/BIMVI1902287M
[13] M. Murali Krishna Rao, A study of generalization of bi-ideal, quasi-ideal and interior ideal of semigroup, Math. Morovica 22 (2018) 103–115.
[14] N. Nobusawa, On a generalization of the ring theory, Osaka. J. Math. 1 (1964) 81–89.
[15] M.K. Sen, On Γ-semigroup, Proc. of International Conference of algebra and its application, (Decker Publicaiton, New York, 1981) 301–308.
[16] O. Steinfeld, Uher die quasi ideals, Von halbgruppend, Publ. Math. Debrecen 4 (1956) 262–275.
[17] H.S. Vandiver, Note on a simple type of algebra in which cancellation law of addition does not hold, Bull. Amer. Math. Soc. (N.S.) 40 (1934) 914–920.