On the Genus of the Idempotent Graph of a Finite Commutative Ring
Discussiones Mathematicae. General Algebra and Applications, Tome 41 (2021) no. 1, pp. 23-31
Voir la notice de l'article provenant de la source Library of Science
Let R be a finite commutative ring with identity. The idempotent graph of R is the simple undirected graph I(R) with vertex set, the set of all non-trivial idempotents of R and two distinct vertices x and y are adjacent if and only if xy = 0. In this paper, we have determined all isomorphism classes of finite commutative rings with identity whose I(R) has genus one or two. Also we have determined all isomorphism classes of finite commutative rings with identity whose I(R) has crosscap one. Also we study the the book embedding of toroidal idempotent graphs and classify finite commutative rings whose I(R) is a ring graph.
Keywords:
idempotent graph, planar, genus, crosscap
@article{DMGAA_2021_41_1_a2,
author = {Gold Belsi, G. and Kavitha, S. and Selvakumar, K.},
title = {On the {Genus} of the {Idempotent} {Graph} of a {Finite} {Commutative} {Ring}},
journal = {Discussiones Mathematicae. General Algebra and Applications},
pages = {23--31},
publisher = {mathdoc},
volume = {41},
number = {1},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGAA_2021_41_1_a2/}
}
TY - JOUR AU - Gold Belsi, G. AU - Kavitha, S. AU - Selvakumar, K. TI - On the Genus of the Idempotent Graph of a Finite Commutative Ring JO - Discussiones Mathematicae. General Algebra and Applications PY - 2021 SP - 23 EP - 31 VL - 41 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2021_41_1_a2/ LA - en ID - DMGAA_2021_41_1_a2 ER -
%0 Journal Article %A Gold Belsi, G. %A Kavitha, S. %A Selvakumar, K. %T On the Genus of the Idempotent Graph of a Finite Commutative Ring %J Discussiones Mathematicae. General Algebra and Applications %D 2021 %P 23-31 %V 41 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGAA_2021_41_1_a2/ %G en %F DMGAA_2021_41_1_a2
Gold Belsi, G.; Kavitha, S.; Selvakumar, K. On the Genus of the Idempotent Graph of a Finite Commutative Ring. Discussiones Mathematicae. General Algebra and Applications, Tome 41 (2021) no. 1, pp. 23-31. http://geodesic.mathdoc.fr/item/DMGAA_2021_41_1_a2/