On the Genus of the Idempotent Graph of a Finite Commutative Ring
Discussiones Mathematicae. General Algebra and Applications, Tome 41 (2021) no. 1, pp. 23-31.

Voir la notice de l'article provenant de la source Library of Science

Let R be a finite commutative ring with identity. The idempotent graph of R is the simple undirected graph I(R) with vertex set, the set of all non-trivial idempotents of R and two distinct vertices x and y are adjacent if and only if xy = 0. In this paper, we have determined all isomorphism classes of finite commutative rings with identity whose I(R) has genus one or two. Also we have determined all isomorphism classes of finite commutative rings with identity whose I(R) has crosscap one. Also we study the the book embedding of toroidal idempotent graphs and classify finite commutative rings whose I(R) is a ring graph.
Keywords: idempotent graph, planar, genus, crosscap
@article{DMGAA_2021_41_1_a2,
     author = {Gold Belsi, G. and Kavitha, S. and Selvakumar, K.},
     title = {On the {Genus} of the {Idempotent} {Graph} of a {Finite} {Commutative} {Ring}},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {23--31},
     publisher = {mathdoc},
     volume = {41},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2021_41_1_a2/}
}
TY  - JOUR
AU  - Gold Belsi, G.
AU  - Kavitha, S.
AU  - Selvakumar, K.
TI  - On the Genus of the Idempotent Graph of a Finite Commutative Ring
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2021
SP  - 23
EP  - 31
VL  - 41
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2021_41_1_a2/
LA  - en
ID  - DMGAA_2021_41_1_a2
ER  - 
%0 Journal Article
%A Gold Belsi, G.
%A Kavitha, S.
%A Selvakumar, K.
%T On the Genus of the Idempotent Graph of a Finite Commutative Ring
%J Discussiones Mathematicae. General Algebra and Applications
%D 2021
%P 23-31
%V 41
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2021_41_1_a2/
%G en
%F DMGAA_2021_41_1_a2
Gold Belsi, G.; Kavitha, S.; Selvakumar, K. On the Genus of the Idempotent Graph of a Finite Commutative Ring. Discussiones Mathematicae. General Algebra and Applications, Tome 41 (2021) no. 1, pp. 23-31. http://geodesic.mathdoc.fr/item/DMGAA_2021_41_1_a2/

[1] S. Akbari, M. Habibi, A. Majidinya and R. Manaviyat, On the Idempotent Graph of a Ring, J. Algebra 12 (2013) 1–14. doi:10.1142/S0219498813500035

[2] M.F. Atiyah and I.G. Macdonald, Introduction to Commutative Algebra (Addison – Wiley Publishing Company, London, 1969).

[3] I. Beck, Coloring of commutative rings, J. Algebra 116 (1988) 208–226. doi:10.1016/0021-8693(88)90202-5

[4] J.A. Bondy and U.S.R. Murty, Graph Theory and its Applications (American Elsevier, New York, 1976).

[5] F.R. Bernhart and P.C. Kainen, The book thickness of a graph, J. Comb. Theory, Ser. B 27 (1979) 320–331. doi:10.1016/0095-8956(79)90021-2

[6] S. Kavitha and R. Kala, On the genus of graphs from commutative rings, AKCE Int. J. Graphs Combin. 14 (2017) 27–34. doi:10.1016/j.akcej.2016.11.006

[7] T.Y. Lam, A First Course in Non-commutative Rings (Springer-Verlag, New York, 2001).

[8] M.M. Sys lo, Characterizations of Outer planar graphs, Discrete Math. 26 (1979) 47–53. doi:10.1016/0012-365X(79)90060-8

[9] A. Mallika and R. Kala, Nilpotent graphs with crosscap at most two, AKCE Int. J. Graphs Combin. 15 (2018) 229–237. doi:10.1016/j.akcej.2017.11.006

[10] M. Yannakakis, Embedding planar graphs in four pages, J. Comput. Syst. Sci. 38 (1989) 36–67. doi:10.1016/0022-0000(89)90032-9

[11] R. Blankenship and B. Oporowski, Drawing subdivisions of complete and complete bipartite graphs on books (Tech Rep. 1994-4, Department of Mathematics, Louisiana State University, 1999).

[12] T. McKenzie and S. Overbay, Book thickness of toroidal zero-divisor graphs, Africa Matematika 28 (2017) 823–830. doi:10.35834/mjms/1449161362

[13] T. Endo, The page number of toroidal graph is at most seven, Discrete Math. 175 (1997) 87–96. doi:10.1016/S0012-365X(96)00144-6

[14] A.T. White, Graphs, Groups and Surfaces (North-Holland-Amsterdam, 1984).