Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2021_41_1_a2, author = {Gold Belsi, G. and Kavitha, S. and Selvakumar, K.}, title = {On the {Genus} of the {Idempotent} {Graph} of a {Finite} {Commutative} {Ring}}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {23--31}, publisher = {mathdoc}, volume = {41}, number = {1}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2021_41_1_a2/} }
TY - JOUR AU - Gold Belsi, G. AU - Kavitha, S. AU - Selvakumar, K. TI - On the Genus of the Idempotent Graph of a Finite Commutative Ring JO - Discussiones Mathematicae. General Algebra and Applications PY - 2021 SP - 23 EP - 31 VL - 41 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2021_41_1_a2/ LA - en ID - DMGAA_2021_41_1_a2 ER -
%0 Journal Article %A Gold Belsi, G. %A Kavitha, S. %A Selvakumar, K. %T On the Genus of the Idempotent Graph of a Finite Commutative Ring %J Discussiones Mathematicae. General Algebra and Applications %D 2021 %P 23-31 %V 41 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGAA_2021_41_1_a2/ %G en %F DMGAA_2021_41_1_a2
Gold Belsi, G.; Kavitha, S.; Selvakumar, K. On the Genus of the Idempotent Graph of a Finite Commutative Ring. Discussiones Mathematicae. General Algebra and Applications, Tome 41 (2021) no. 1, pp. 23-31. http://geodesic.mathdoc.fr/item/DMGAA_2021_41_1_a2/
[1] S. Akbari, M. Habibi, A. Majidinya and R. Manaviyat, On the Idempotent Graph of a Ring, J. Algebra 12 (2013) 1–14. doi:10.1142/S0219498813500035
[2] M.F. Atiyah and I.G. Macdonald, Introduction to Commutative Algebra (Addison – Wiley Publishing Company, London, 1969).
[3] I. Beck, Coloring of commutative rings, J. Algebra 116 (1988) 208–226. doi:10.1016/0021-8693(88)90202-5
[4] J.A. Bondy and U.S.R. Murty, Graph Theory and its Applications (American Elsevier, New York, 1976).
[5] F.R. Bernhart and P.C. Kainen, The book thickness of a graph, J. Comb. Theory, Ser. B 27 (1979) 320–331. doi:10.1016/0095-8956(79)90021-2
[6] S. Kavitha and R. Kala, On the genus of graphs from commutative rings, AKCE Int. J. Graphs Combin. 14 (2017) 27–34. doi:10.1016/j.akcej.2016.11.006
[7] T.Y. Lam, A First Course in Non-commutative Rings (Springer-Verlag, New York, 2001).
[8] M.M. Sys lo, Characterizations of Outer planar graphs, Discrete Math. 26 (1979) 47–53. doi:10.1016/0012-365X(79)90060-8
[9] A. Mallika and R. Kala, Nilpotent graphs with crosscap at most two, AKCE Int. J. Graphs Combin. 15 (2018) 229–237. doi:10.1016/j.akcej.2017.11.006
[10] M. Yannakakis, Embedding planar graphs in four pages, J. Comput. Syst. Sci. 38 (1989) 36–67. doi:10.1016/0022-0000(89)90032-9
[11] R. Blankenship and B. Oporowski, Drawing subdivisions of complete and complete bipartite graphs on books (Tech Rep. 1994-4, Department of Mathematics, Louisiana State University, 1999).
[12] T. McKenzie and S. Overbay, Book thickness of toroidal zero-divisor graphs, Africa Matematika 28 (2017) 823–830. doi:10.35834/mjms/1449161362
[13] T. Endo, The page number of toroidal graph is at most seven, Discrete Math. 175 (1997) 87–96. doi:10.1016/S0012-365X(96)00144-6
[14] A.T. White, Graphs, Groups and Surfaces (North-Holland-Amsterdam, 1984).