Unitary Invertible Graphs of Finite Rings
Discussiones Mathematicae. General Algebra and Applications, Tome 41 (2021) no. 1, pp. 195-208.

Voir la notice de l'article provenant de la source Library of Science

Let R be a finite commutative ring with unity. In this paper, we consider set of additive and mutual additive inverses of group units of R and obtain interrelations between them. In general φ(Zn) is even, however we demonstrate that φ(R) is odd for any finite commutative ring with unity of Char(R) ≠ 2. Further, we present unitary invertible graph related with self and mutual additive inverses of group units. At long last, we establish a formula for counting the total number of basic and non-basic triangles in the unitary invertible graph.
Keywords: finite commutative rings, additive and mutual additive inverses, Euler-function, unitary invertible graphs, basic and non-basic triangles
@article{DMGAA_2021_41_1_a15,
     author = {Chalapathi, Tekuri and Sajana, Shaik},
     title = {Unitary {Invertible} {Graphs} of {Finite} {Rings}},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {195--208},
     publisher = {mathdoc},
     volume = {41},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2021_41_1_a15/}
}
TY  - JOUR
AU  - Chalapathi, Tekuri
AU  - Sajana, Shaik
TI  - Unitary Invertible Graphs of Finite Rings
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2021
SP  - 195
EP  - 208
VL  - 41
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2021_41_1_a15/
LA  - en
ID  - DMGAA_2021_41_1_a15
ER  - 
%0 Journal Article
%A Chalapathi, Tekuri
%A Sajana, Shaik
%T Unitary Invertible Graphs of Finite Rings
%J Discussiones Mathematicae. General Algebra and Applications
%D 2021
%P 195-208
%V 41
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2021_41_1_a15/
%G en
%F DMGAA_2021_41_1_a15
Chalapathi, Tekuri; Sajana, Shaik. Unitary Invertible Graphs of Finite Rings. Discussiones Mathematicae. General Algebra and Applications, Tome 41 (2021) no. 1, pp. 195-208. http://geodesic.mathdoc.fr/item/DMGAA_2021_41_1_a15/

[1] M. Afkhami and F. Khosh-Ahang, Unit graphs of rings of polynomials and power series, Arab. J. Math. 2 (2013) 233–246. doi:10.1007/s40065-013-0067-0

[2] R. Akhtar, M. Boggess, T. Jackson-Henderson, I. Jimenez, R. Karpman, A. Kinzel and D. Pritikin, On the Unitary Cayley Graph of a Finite Ring, Electron. J. Combin. 16 (2009) 1–13.

[3] M.R. Alfuraidan and Y.F. Zakariya, Inverse graphs associated with finite groups, Electron. J. Graph Theory and Appl. 5 (2017) 142–154. doi:10.5614/ejgta.2017.5.1.14

[4] N. Ashrafi, H.R. Maimani, M.R. Pournaki and S. Yassemi, Unit Graphs Associated with Rings, Commun. Algebra 38 (2010) 2851–2871. doi:10.1080/00927870903095574

[5] M. Basic and A. Ilic, Polynomials of Unitary Cayley Graphs, Filomat 29 (2015) 2079–2086. doi:10.2298/FIL1509079B

[6] J.A. Beachy and W.D. Blair, Abstract Algebra, Third Edition (Waveland Press, 2006).

[7] N. Biggs, Algebraic Graph Theory, 2nd Edition (Cambridge India, 2016).

[8] J.A. Bondy and U.S.R. Mutry, Graph Theory with Application (Springer India, 2013).

[9] P. Brrizbeitia and R.E. Gaudici, Counting pure k-cycles in sequences of Cayley graphs, Discrete Math. 149 (1996) 11–18.

[10] T. Chalapathi, RVMSS. Kiran Kumar and F. Smarandache, Neutrosophic Invertible Graphs of Neutrosophic Rings, New Trends in Neutrosophic Theory and Applications 2 (2018) 209–217.

[11] T. Chalapathi and RVMSS. Kiran Kumar, Self Additive Inverse Elements of Neutrosophic Rings and Fields, Ann. Pure Appl. Math. 13 (2017) 63–72. doi:10.22457/apam.v13n1a7

[12] T. Chalapathi, S. Sajana and D. Bharathi, Classical pairs in Zn, Notes on Number Theory and Discrete Math. 26 (2020) 59–69. doi:10.7546/nntdm.2020.26.1.59-69

[13] I. Dejter and R.E. Giudici, On unitary Cayley graphs, J. Combin. Math. Combin. Comput 18 (1995) 121–124.

[14] G. Dresden and W.M. Dymacek, Finding Factors and Factor Rings over the Gaussian Integers, The Mathematical Association of America 112 (2005) 602–611. doi:10.1080/00029890.2005.11920231

[15] S. Huadong, A study of unit graphs and unitary cayley graphs associated with rings, Doctoral Ph.D. Thesis (Memorial University of Newfoundland, 2015).

[16] D.L. James, Applications of Unitary Symmetry and Combinatorics (World Scientific Publishers, 2011).

[17] W.F. Joe and L.S. Robert, Rings Generated by Their Units, J. Algebra 42 (1976) 363–368.

[18] R. Joy and K. Patra, Some aspects of Unitary addition Cayley graph of Gaussian integers modulo n, Matematika 32 (2016) 43–52. doi:10.11113/matematika.v32.n1.782

[19] D. Kiani and M.M.H. Aghaei, On the Unitary Cayley Graphs of a Ring, Electron. J. Combin. 19 (2012) 1–10. doi:doi.org/10.37236/2214

[20] W. Klotz and T. Sander, Some properties of unitary Cayley graphs, Electron. J. Combin. 14 (2007) 1–12. doi:10.37236/963

[21] X. Liu and S. Zhou, Spectral Properties of Unitary Cayley Graphs of Finite Commutative Rings, Electron. J. Combin. 19 (2012) 1–13.

[22] H.R. Maimani, M.R. Pournaki and S. Yassemi, Rings which are generated by their units: a graph theoretical approach, Elem. Math. 65 (2010) 17–25. doi:10.4171/EM/134

[23] R.G. Raphael, Rings which are generated by their units, J. Algebra 28 (1974) 199–205.

[24] I. Shavitt, Graph Theoretical Concepts for the Unitary Group Approach to the Many-Electron Correlation Problem, International Journal of Quantum Chemistry: Quantum Chemistry Symposium 11 (1977) 131–148. doi:10.1002/qua.560120819

[25] S.G. Telang, Number Theory (Tmh Publisher, 1996).

[26] A. Tripi, Cayley Graphs of Groups and Their Applications, Doctoral Ph.D. Thesis (Missouri State University, 2017).

[27] I.V. Vitaly, Introduction to Graph Theory (Nova Science Publishers. Inc. New York, 2009).