Unitary Invertible Graphs of Finite Rings
Discussiones Mathematicae. General Algebra and Applications, Tome 41 (2021) no. 1, pp. 195-208

Voir la notice de l'article provenant de la source Library of Science

Let R be a finite commutative ring with unity. In this paper, we consider set of additive and mutual additive inverses of group units of R and obtain interrelations between them. In general φ(Zn) is even, however we demonstrate that φ(R) is odd for any finite commutative ring with unity of Char(R) ≠ 2. Further, we present unitary invertible graph related with self and mutual additive inverses of group units. At long last, we establish a formula for counting the total number of basic and non-basic triangles in the unitary invertible graph.
Keywords: finite commutative rings, additive and mutual additive inverses, Euler-function, unitary invertible graphs, basic and non-basic triangles
@article{DMGAA_2021_41_1_a15,
     author = {Chalapathi, Tekuri and Sajana, Shaik},
     title = {Unitary {Invertible} {Graphs} of {Finite} {Rings}},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {195--208},
     publisher = {mathdoc},
     volume = {41},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2021_41_1_a15/}
}
TY  - JOUR
AU  - Chalapathi, Tekuri
AU  - Sajana, Shaik
TI  - Unitary Invertible Graphs of Finite Rings
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2021
SP  - 195
EP  - 208
VL  - 41
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2021_41_1_a15/
LA  - en
ID  - DMGAA_2021_41_1_a15
ER  - 
%0 Journal Article
%A Chalapathi, Tekuri
%A Sajana, Shaik
%T Unitary Invertible Graphs of Finite Rings
%J Discussiones Mathematicae. General Algebra and Applications
%D 2021
%P 195-208
%V 41
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2021_41_1_a15/
%G en
%F DMGAA_2021_41_1_a15
Chalapathi, Tekuri; Sajana, Shaik. Unitary Invertible Graphs of Finite Rings. Discussiones Mathematicae. General Algebra and Applications, Tome 41 (2021) no. 1, pp. 195-208. http://geodesic.mathdoc.fr/item/DMGAA_2021_41_1_a15/