Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2021_41_1_a14, author = {Mozumder, Muzibur Rahman and Dar, Nadeem Ahmad and Khan, Mohammad Salahuddin and Abbasi, Adnan}, title = {On the {Skew} {Lie} {Product} and {Derivations} of {Prime} {Rings} with {Involution}}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {183--194}, publisher = {mathdoc}, volume = {41}, number = {1}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2021_41_1_a14/} }
TY - JOUR AU - Mozumder, Muzibur Rahman AU - Dar, Nadeem Ahmad AU - Khan, Mohammad Salahuddin AU - Abbasi, Adnan TI - On the Skew Lie Product and Derivations of Prime Rings with Involution JO - Discussiones Mathematicae. General Algebra and Applications PY - 2021 SP - 183 EP - 194 VL - 41 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2021_41_1_a14/ LA - en ID - DMGAA_2021_41_1_a14 ER -
%0 Journal Article %A Mozumder, Muzibur Rahman %A Dar, Nadeem Ahmad %A Khan, Mohammad Salahuddin %A Abbasi, Adnan %T On the Skew Lie Product and Derivations of Prime Rings with Involution %J Discussiones Mathematicae. General Algebra and Applications %D 2021 %P 183-194 %V 41 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGAA_2021_41_1_a14/ %G en %F DMGAA_2021_41_1_a14
Mozumder, Muzibur Rahman; Dar, Nadeem Ahmad; Khan, Mohammad Salahuddin; Abbasi, Adnan. On the Skew Lie Product and Derivations of Prime Rings with Involution. Discussiones Mathematicae. General Algebra and Applications, Tome 41 (2021) no. 1, pp. 183-194. http://geodesic.mathdoc.fr/item/DMGAA_2021_41_1_a14/
[1] S. Ali and N.A. Dar, On ∗ -centralizing mappings in rings with involution, Georgian Math. J. 21 (2014) 25–28. doi:10.1515/gmj-2014-0006
[2] S. Ali, N.A. Dar and A.N. Khan, On strong commutativity preserving like maps in rings with involution, Miskolc Math. Notes 16 (2015) 17–24. doi:10.18514/MMN.2015.1297
[3] S. Ali and N.A. Dar, On centralizers of prime rings with involution, Bull. Iranian Math. Soc. 41 (2015) 1465–1475.
[4] M. Ashraf and N. Rehman, On commutativity of rings with derivations, Results Math. 42 (2002) 3–8. doi:10.1007/BF03323547
[5] K.I. Beider, W.S. Martindale III and A.V. Mikhalev, Rings with Generalized Identities, Monogr. Texb. Pure Appl. Math. 196 (Marcel Dekker, New York, 11, 1996).
[6] H.E. Bell and M.N. Daif, On derivations and commutativity in prime rings, Acta Math. Hungar. 66 (1995) 337–343. doi:10.1007/BF01876049
[7] H.E. Bell and M.N. Daif, On commutativity and strong commutativity preserving maps, Canad. Math. Bull. 37 (1994) 443–447. doi:10.4153/CMB-1994-064-x
[8] H.E. Bell and W.S. Martindale III, Centralizing mappings on semiprime rings, Canad. Math. Bull. 30 (1987) 92–101. doi:10.4153/CMB-1987-014-x
[9] M. Brešar and C.R. Miers, Strong commutativity preserving mappings of semiprime rings, Canad. Math. Bull. 37 (1994) 457–460. doi:10.4153/CMB-1994-066-4
[10] N.A. Dar and A.N. Khan, Generalized derivations in rings with involution, Algebra Colloquium 24 (2017) 393–399. doi:10.1142/S1005386717000244
[11] I.N. Herstein, Rings with Involution, Chicago Lectures in Math. (The University of Chicago Press, Chicago, 1976.)
[12] L. Molnar, A condition for a subspace of B ( H ) to be an ideal, Linear Algebra Appl. 235 (1996) 229–234. doi:10.1016/0024-3795(94)00143-X
[13] B. Nejjar, A. Kacha, A. Mamouni and L. Oukhtite, Commutativity theorems in rings with involution, Comm. Algebra 45 (2017) 698–708. doi:10.1080/00927872.2016.1172629
[14] B. Nejjar, A. Kacha, A. Mamouni and L. Oukhtite, Some commutativity criteria for rings with involution, Int. J. Open Problem Compt. Math. 10 (2017) 6–15.
[15] E.C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957) 1093–1100. doi:10.1090/S0002-9939-1957-0095863-0
[16] P. Šemrl, On Jordan *-derivations and an application, Colloq. Math. 59 (1990) 241–251. doi:10.4064/cm-59-2-241-251
[17] P. Šemrl, Quadratic functionals and Jordan ∗ -derivations, Studia Math. 97 (1990) 157–165. doi:10.4064/sm-97-3-157-165