On the Skew Lie Product and Derivations of Prime Rings with Involution
Discussiones Mathematicae. General Algebra and Applications, Tome 41 (2021) no. 1, pp. 183-194.

Voir la notice de l'article provenant de la source Library of Science

Let R be a ring with involution ′∗′. The skew Lie product of a, b ∈ R is defined by ∗[a, b] = ab − ba. The purpose of this paper is to study the commutativity of a prime ring which satisfies the various ∗-differential identities involving skew Lie product. Finally, we provide two examples to prove that the assumed restrictions on some of our results are not superfluous.
Keywords: prime ring, skew Lie product, derivation, involution
@article{DMGAA_2021_41_1_a14,
     author = {Mozumder, Muzibur Rahman and Dar, Nadeem Ahmad and Khan, Mohammad Salahuddin and Abbasi, Adnan},
     title = {On the {Skew} {Lie} {Product} and {Derivations} of {Prime} {Rings} with {Involution}},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {183--194},
     publisher = {mathdoc},
     volume = {41},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2021_41_1_a14/}
}
TY  - JOUR
AU  - Mozumder, Muzibur Rahman
AU  - Dar, Nadeem Ahmad
AU  - Khan, Mohammad Salahuddin
AU  - Abbasi, Adnan
TI  - On the Skew Lie Product and Derivations of Prime Rings with Involution
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2021
SP  - 183
EP  - 194
VL  - 41
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2021_41_1_a14/
LA  - en
ID  - DMGAA_2021_41_1_a14
ER  - 
%0 Journal Article
%A Mozumder, Muzibur Rahman
%A Dar, Nadeem Ahmad
%A Khan, Mohammad Salahuddin
%A Abbasi, Adnan
%T On the Skew Lie Product and Derivations of Prime Rings with Involution
%J Discussiones Mathematicae. General Algebra and Applications
%D 2021
%P 183-194
%V 41
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2021_41_1_a14/
%G en
%F DMGAA_2021_41_1_a14
Mozumder, Muzibur Rahman; Dar, Nadeem Ahmad; Khan, Mohammad Salahuddin; Abbasi, Adnan. On the Skew Lie Product and Derivations of Prime Rings with Involution. Discussiones Mathematicae. General Algebra and Applications, Tome 41 (2021) no. 1, pp. 183-194. http://geodesic.mathdoc.fr/item/DMGAA_2021_41_1_a14/

[1] S. Ali and N.A. Dar, On ∗ -centralizing mappings in rings with involution, Georgian Math. J. 21 (2014) 25–28. doi:10.1515/gmj-2014-0006

[2] S. Ali, N.A. Dar and A.N. Khan, On strong commutativity preserving like maps in rings with involution, Miskolc Math. Notes 16 (2015) 17–24. doi:10.18514/MMN.2015.1297

[3] S. Ali and N.A. Dar, On centralizers of prime rings with involution, Bull. Iranian Math. Soc. 41 (2015) 1465–1475.

[4] M. Ashraf and N. Rehman, On commutativity of rings with derivations, Results Math. 42 (2002) 3–8. doi:10.1007/BF03323547

[5] K.I. Beider, W.S. Martindale III and A.V. Mikhalev, Rings with Generalized Identities, Monogr. Texb. Pure Appl. Math. 196 (Marcel Dekker, New York, 11, 1996).

[6] H.E. Bell and M.N. Daif, On derivations and commutativity in prime rings, Acta Math. Hungar. 66 (1995) 337–343. doi:10.1007/BF01876049

[7] H.E. Bell and M.N. Daif, On commutativity and strong commutativity preserving maps, Canad. Math. Bull. 37 (1994) 443–447. doi:10.4153/CMB-1994-064-x

[8] H.E. Bell and W.S. Martindale III, Centralizing mappings on semiprime rings, Canad. Math. Bull. 30 (1987) 92–101. doi:10.4153/CMB-1987-014-x

[9] M. Brešar and C.R. Miers, Strong commutativity preserving mappings of semiprime rings, Canad. Math. Bull. 37 (1994) 457–460. doi:10.4153/CMB-1994-066-4

[10] N.A. Dar and A.N. Khan, Generalized derivations in rings with involution, Algebra Colloquium 24 (2017) 393–399. doi:10.1142/S1005386717000244

[11] I.N. Herstein, Rings with Involution, Chicago Lectures in Math. (The University of Chicago Press, Chicago, 1976.)

[12] L. Molnar, A condition for a subspace of B ( H ) to be an ideal, Linear Algebra Appl. 235 (1996) 229–234. doi:10.1016/0024-3795(94)00143-X

[13] B. Nejjar, A. Kacha, A. Mamouni and L. Oukhtite, Commutativity theorems in rings with involution, Comm. Algebra 45 (2017) 698–708. doi:10.1080/00927872.2016.1172629

[14] B. Nejjar, A. Kacha, A. Mamouni and L. Oukhtite, Some commutativity criteria for rings with involution, Int. J. Open Problem Compt. Math. 10 (2017) 6–15.

[15] E.C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957) 1093–1100. doi:10.1090/S0002-9939-1957-0095863-0

[16] P. Šemrl, On Jordan *-derivations and an application, Colloq. Math. 59 (1990) 241–251. doi:10.4064/cm-59-2-241-251

[17] P. Šemrl, Quadratic functionals and Jordan ∗ -derivations, Studia Math. 97 (1990) 157–165. doi:10.4064/sm-97-3-157-165