Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2021_41_1_a12, author = {Gr\"atzer, G.}, title = {Applying the {Cz\'edli-Schmidt} {Sequences} to {Congruence} {Properties} of {Planar} {Semimodular} {Lattices}}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {153--169}, publisher = {mathdoc}, volume = {41}, number = {1}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2021_41_1_a12/} }
TY - JOUR AU - Grätzer, G. TI - Applying the Czédli-Schmidt Sequences to Congruence Properties of Planar Semimodular Lattices JO - Discussiones Mathematicae. General Algebra and Applications PY - 2021 SP - 153 EP - 169 VL - 41 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2021_41_1_a12/ LA - en ID - DMGAA_2021_41_1_a12 ER -
%0 Journal Article %A Grätzer, G. %T Applying the Czédli-Schmidt Sequences to Congruence Properties of Planar Semimodular Lattices %J Discussiones Mathematicae. General Algebra and Applications %D 2021 %P 153-169 %V 41 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGAA_2021_41_1_a12/ %G en %F DMGAA_2021_41_1_a12
Grätzer, G. Applying the Czédli-Schmidt Sequences to Congruence Properties of Planar Semimodular Lattices. Discussiones Mathematicae. General Algebra and Applications, Tome 41 (2021) no. 1, pp. 153-169. http://geodesic.mathdoc.fr/item/DMGAA_2021_41_1_a12/
[1] K. Adaricheva, V.A. Gorbunov and V.I. Tumanov, Join-semidistributive lattices and convex geometries, Adv. Math. 173 (2003) 1–49. doi:10.1016/s0001-8708(02)00011-7
[2] S.P. Avann, Locally atomic upper locally distributive lattices, Math. Ann. 175 (1968) 320–336. doi:10.1007/bf02063217
[3] G. Birkhoff, Lattice Theory, Third Edition, American Mathematical Society Colloquium Publications, Vol. XXV (American Mathematical Society, Providence, R.I., 1967).
[4] G. Czédli, A Horn sentence in coalition lattices, Acta Math. Hungarica 72 (1996) 99–104. doi:10.1007/bf00053700
[5] G. Czédli, Sums of lattices and a relational category, Order 26 (2009) 309–318. doi:10.1007/s11083-009-9127-7
[6] G. Czédli, A note on congruence lattices of slim semimodular lattices, Algebra Univ. 72 (2014) 225–230. doi:10.1007/s00012-014-0286-z
[7] G. Czédli, Finite convex geometries of circles, Discrete Math. 330 (2014) 61–75. doi:10.1016/j.disc.2014.04.017
[8] G. Czédli and G. Grätzer, Planar Semimodular Lattices: Structure and Diagrams, Chapter 3 in [25]. doi:10.1007/978-3-319-06413-0\_3
[9] G. Czédli, L. Ozsvárt and B. Udvari, How many ways can two composition series intersect ?, Discrete Math. 312 (2012) 3523–3536. doi:10.1016/j.disc.2012.08.003
[10] G. Czédli and E.T. Schmidt, Slim semimodular lattices I. A visual approach, Order 29 (2012) 481–497. doi:10.1007/s11083-011-9215-3
[11] R.P. Dilworth, Lattices with unique irreducible decompositions, Ann. of Math. 41 (1940) 771–777. doi:10.1007/978-1-4899-3558-8\_10
[12] G. Grätzer, Lattice Theory: Foundation (Birkhäuser Verlag, Basel, 2011). doi:10.1007/978-3-0348-0018-1
[13] G. Grätzer, Planar Semimimodular Lattices: Congruences, Chapter 4 in [24]. doi:10.1007/978-3-319-06413-0\_4
[14] G. Grätzer, The Congruences of a Finite Lattice, A Proof-by-Picture Approach, Second Edition (Birkhäuser, 2016). doi:10.1007/978-3-319-38798-7
[15] G. Grätzer, Congruences in slim, planar, semimodular lattices: The Swing Lemma, Acta Sci. Math. (Szeged) 81 (2015) 381–397. doi:10.14232/actasm-015-757-1
[16] G. Grätzer, Congruences of fork extensions of lattices, Algebra Univ. 76 (2016) 139–154. doi:10.1007/s00012-016-0394-z
[17] G. Grätzer, Notes on planar semimodular lattices, VIII, Congruence lattices of SPS lattices, Algebra Univ. doi:10.1007/s00012-020-0641-1
[18] G. Grätzer and E. Knapp, Notes on planar semimodular lattices, I, Construction, Acta Sci. Math. (Szeged) 73 (2007) 445–462. Acta Sci. Math. (Szeged) 74 (2008) 37–47.
[19] G. Grätzer and E. Knapp, A note on planar semimodular lattices, Algebra Univ. 58 (2008) 497–499. doi:10.1007/s00012-008-2089-6
[20] G. Grätzer and E. Knapp, Notes on planar semimodular lattices, II, Congruences, Acta Sci. Math. (Szeged) 74 (2008) 37–47.
[21] G. Grätzer and E. Knapp, Notes on planar semimodular lattices, III, Rectangular lattices, Acta Sci. Math. (Szeged) 75 (2009) 29–48.
[22] G. Grätzer and E. Knapp, Notes on planar semimodular lattices, IV, The size of a minimal congruence lattice representation with rectangular lattices, Acta Sci. Math. (Szeged) 76 (2010) 3–26.
[23] G. Grätzer, H. Lakser, and E.T. Schmidt, Congruence lattices of small planar lattices, Proc. Amer. Math. Soc. 123 (1995) 2619–2623. doi:10.2307/2160551
[24] G. Grätzer and F. Wehrung eds., Lattice Theory: Special Topics and Applications, Volume 1 (Birkhäuser Verlag, Basel, 2014). doi:10.1007/978-3-319-06413-0
[25] G. Grätzer and F. Wehrung eds., Lattice Theory: Special Topics and Applications, Volume 2 (Birkhäuser Verlag, Basel, 2016). doi:10.1007/978-3-319-44236-5
[26] D. Kelly and I. Rival, Planar lattices, Canad. J. Math. 27 (1975) 636–665. doi:10.4153/cjm-1975-074-0
[27] S. MacLane, A conjecture of Ore on chains in partially ordered sets, Bull. Amer. Math. Soc. 49 (1943) 567–568. doi:10.1090/s0002-9904-1943-07972-4
[28] O. Ore, Chains in partially ordered sets, Bull. Amer. Math. Soc. 49 (1943) 558–566. doi:10.1090/s0002-9904-1943-07970-0
[29] P.M. Whitman, Free lattices, Ann. of Math. 42 (2) (1941) 325–330. doi:10.2307/1969001
[30] P.M. Whitman, Free lattices II, Ann. of Math. 43 (2) (1942) 104–115. doi:10.2307/1968883