Applying the Czédli-Schmidt Sequences to Congruence Properties of Planar Semimodular Lattices
Discussiones Mathematicae. General Algebra and Applications, Tome 41 (2021) no. 1, pp. 153-169.

Voir la notice de l'article provenant de la source Library of Science

Following Grätzer and Knapp, 2009, a planar semimodular lattice L is rectangular, if the left boundary chain has exactly one doubly-irreducible element, cl, and the right boundary chain has exactly one doubly-irreducible element, cr, and these elements are complementary. The Czédli-Schmidt Sequences, introduced in 2012, construct rectangular lattices. We use them to prove some structure theorems. In particular, we prove that for a slim (no M3 sublattice) rectangular lattice L, the congruence lattice Con L has exactly length[cl, 1] + length[cr, 1] dual atoms and a dual atom in Con L is a congruence with exactly two classes. We also describe the prime ideals in a slim rectangular lattice.
Keywords: lattice, congruence, semimodular, planar, slim
@article{DMGAA_2021_41_1_a12,
     author = {Gr\"atzer, G.},
     title = {Applying the {Cz\'edli-Schmidt} {Sequences} to {Congruence} {Properties} of {Planar} {Semimodular} {Lattices}},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {153--169},
     publisher = {mathdoc},
     volume = {41},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2021_41_1_a12/}
}
TY  - JOUR
AU  - Grätzer, G.
TI  - Applying the Czédli-Schmidt Sequences to Congruence Properties of Planar Semimodular Lattices
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2021
SP  - 153
EP  - 169
VL  - 41
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2021_41_1_a12/
LA  - en
ID  - DMGAA_2021_41_1_a12
ER  - 
%0 Journal Article
%A Grätzer, G.
%T Applying the Czédli-Schmidt Sequences to Congruence Properties of Planar Semimodular Lattices
%J Discussiones Mathematicae. General Algebra and Applications
%D 2021
%P 153-169
%V 41
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2021_41_1_a12/
%G en
%F DMGAA_2021_41_1_a12
Grätzer, G. Applying the Czédli-Schmidt Sequences to Congruence Properties of Planar Semimodular Lattices. Discussiones Mathematicae. General Algebra and Applications, Tome 41 (2021) no. 1, pp. 153-169. http://geodesic.mathdoc.fr/item/DMGAA_2021_41_1_a12/

[1] K. Adaricheva, V.A. Gorbunov and V.I. Tumanov, Join-semidistributive lattices and convex geometries, Adv. Math. 173 (2003) 1–49. doi:10.1016/s0001-8708(02)00011-7

[2] S.P. Avann, Locally atomic upper locally distributive lattices, Math. Ann. 175 (1968) 320–336. doi:10.1007/bf02063217

[3] G. Birkhoff, Lattice Theory, Third Edition, American Mathematical Society Colloquium Publications, Vol. XXV (American Mathematical Society, Providence, R.I., 1967).

[4] G. Czédli, A Horn sentence in coalition lattices, Acta Math. Hungarica 72 (1996) 99–104. doi:10.1007/bf00053700

[5] G. Czédli, Sums of lattices and a relational category, Order 26 (2009) 309–318. doi:10.1007/s11083-009-9127-7

[6] G. Czédli, A note on congruence lattices of slim semimodular lattices, Algebra Univ. 72 (2014) 225–230. doi:10.1007/s00012-014-0286-z

[7] G. Czédli, Finite convex geometries of circles, Discrete Math. 330 (2014) 61–75. doi:10.1016/j.disc.2014.04.017

[8] G. Czédli and G. Grätzer, Planar Semimodular Lattices: Structure and Diagrams, Chapter 3 in [25]. doi:10.1007/978-3-319-06413-0\_3

[9] G. Czédli, L. Ozsvárt and B. Udvari, How many ways can two composition series intersect ?, Discrete Math. 312 (2012) 3523–3536. doi:10.1016/j.disc.2012.08.003

[10] G. Czédli and E.T. Schmidt, Slim semimodular lattices I. A visual approach, Order 29 (2012) 481–497. doi:10.1007/s11083-011-9215-3

[11] R.P. Dilworth, Lattices with unique irreducible decompositions, Ann. of Math. 41 (1940) 771–777. doi:10.1007/978-1-4899-3558-8\_10

[12] G. Grätzer, Lattice Theory: Foundation (Birkhäuser Verlag, Basel, 2011). doi:10.1007/978-3-0348-0018-1

[13] G. Grätzer, Planar Semimimodular Lattices: Congruences, Chapter 4 in [24]. doi:10.1007/978-3-319-06413-0\_4

[14] G. Grätzer, The Congruences of a Finite Lattice, A Proof-by-Picture Approach, Second Edition (Birkhäuser, 2016). doi:10.1007/978-3-319-38798-7

[15] G. Grätzer, Congruences in slim, planar, semimodular lattices: The Swing Lemma, Acta Sci. Math. (Szeged) 81 (2015) 381–397. doi:10.14232/actasm-015-757-1

[16] G. Grätzer, Congruences of fork extensions of lattices, Algebra Univ. 76 (2016) 139–154. doi:10.1007/s00012-016-0394-z

[17] G. Grätzer, Notes on planar semimodular lattices, VIII, Congruence lattices of SPS lattices, Algebra Univ. doi:10.1007/s00012-020-0641-1

[18] G. Grätzer and E. Knapp, Notes on planar semimodular lattices, I, Construction, Acta Sci. Math. (Szeged) 73 (2007) 445–462. Acta Sci. Math. (Szeged) 74 (2008) 37–47.

[19] G. Grätzer and E. Knapp, A note on planar semimodular lattices, Algebra Univ. 58 (2008) 497–499. doi:10.1007/s00012-008-2089-6

[20] G. Grätzer and E. Knapp, Notes on planar semimodular lattices, II, Congruences, Acta Sci. Math. (Szeged) 74 (2008) 37–47.

[21] G. Grätzer and E. Knapp, Notes on planar semimodular lattices, III, Rectangular lattices, Acta Sci. Math. (Szeged) 75 (2009) 29–48.

[22] G. Grätzer and E. Knapp, Notes on planar semimodular lattices, IV, The size of a minimal congruence lattice representation with rectangular lattices, Acta Sci. Math. (Szeged) 76 (2010) 3–26.

[23] G. Grätzer, H. Lakser, and E.T. Schmidt, Congruence lattices of small planar lattices, Proc. Amer. Math. Soc. 123 (1995) 2619–2623. doi:10.2307/2160551

[24] G. Grätzer and F. Wehrung eds., Lattice Theory: Special Topics and Applications, Volume 1 (Birkhäuser Verlag, Basel, 2014). doi:10.1007/978-3-319-06413-0

[25] G. Grätzer and F. Wehrung eds., Lattice Theory: Special Topics and Applications, Volume 2 (Birkhäuser Verlag, Basel, 2016). doi:10.1007/978-3-319-44236-5

[26] D. Kelly and I. Rival, Planar lattices, Canad. J. Math. 27 (1975) 636–665. doi:10.4153/cjm-1975-074-0

[27] S. MacLane, A conjecture of Ore on chains in partially ordered sets, Bull. Amer. Math. Soc. 49 (1943) 567–568. doi:10.1090/s0002-9904-1943-07972-4

[28] O. Ore, Chains in partially ordered sets, Bull. Amer. Math. Soc. 49 (1943) 558–566. doi:10.1090/s0002-9904-1943-07970-0

[29] P.M. Whitman, Free lattices, Ann. of Math. 42 (2) (1941) 325–330. doi:10.2307/1969001

[30] P.M. Whitman, Free lattices II, Ann. of Math. 43 (2) (1942) 104–115. doi:10.2307/1968883