Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2021_41_1_a11, author = {Cerda-Morales, Gamaliel}, title = {Introduction to {Third-Order} {Jacobsthal} and {Modified} {Third-Order} {Jacobsthal} {Hybrinomials}}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {139--152}, publisher = {mathdoc}, volume = {41}, number = {1}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2021_41_1_a11/} }
TY - JOUR AU - Cerda-Morales, Gamaliel TI - Introduction to Third-Order Jacobsthal and Modified Third-Order Jacobsthal Hybrinomials JO - Discussiones Mathematicae. General Algebra and Applications PY - 2021 SP - 139 EP - 152 VL - 41 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2021_41_1_a11/ LA - en ID - DMGAA_2021_41_1_a11 ER -
%0 Journal Article %A Cerda-Morales, Gamaliel %T Introduction to Third-Order Jacobsthal and Modified Third-Order Jacobsthal Hybrinomials %J Discussiones Mathematicae. General Algebra and Applications %D 2021 %P 139-152 %V 41 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGAA_2021_41_1_a11/ %G en %F DMGAA_2021_41_1_a11
Cerda-Morales, Gamaliel. Introduction to Third-Order Jacobsthal and Modified Third-Order Jacobsthal Hybrinomials. Discussiones Mathematicae. General Algebra and Applications, Tome 41 (2021) no. 1, pp. 139-152. http://geodesic.mathdoc.fr/item/DMGAA_2021_41_1_a11/
[1] G. Cerda-Morales, Identities for third order Jacobsthal quaternions, Adv. Appl. Clifford Alg. 27 (2017) 1043–1053. doi:10.1007/s00006-016-0654-1
[2] G. Cerda-Morales, On a generalization of Tribonacci quaternions, Mediterranean J. Math. 14 (2017) 1–12. doi:10.1007/s00009-017-1042-3
[3] G. Cerda-Morales, A note on modified third-order Jacobsthal numbers, Proyecciones J. Math. 39 (2020) 731–747. doi:10.22199/issn.0717-6279-2020-02-0025
[4] G. Cerda-Morales, Some results on dual third-order Jacobsthal quaternions, FILOMAT 33 (2019) 1865–1876. doi:10.2298/FIL1907865C
[5] G. Cerda-Morales, Third-order Jacobsthal generalized quaternions, J. Geom. Symmetry Phys. 50 (2018) 11–27. doi:10.7546/jgsp-50-2018-11-27
[6] C.K. Cook and M.R. Bacon, Some identities for Jacobsthal and Jacobsthal-Lucas numbers satisfying higher order recurrence relations, Ann. Math. Inform. 41 (2013) 27–39.
[7] G.B. Djordjević, Generalized Jacobsthal polynomials, Fibonacci Quart. 38 (2000) 239–243.
[8] G.B. Djordjević and H.M. Srivastava, Incomplete generalized Jacobsthal and Jacobsthal-Lucas numbers, Math. and Comp. Modelling 42 (2005) 1049–1056. doi:10.1016/j.mcm.2004.10.026
[9] A.F. Horadam, Jacobsthal representation polynomials, Fibonacci Quart. 35 (1997) 137–148.
[10] A.F. Horadam, Jacobsthal representation numbers, The Fibonacci Quarterly 43 (1996) 40–54.
[11] M.Özdemir, Introduction to hybrid numbers, Adv. Appl. Clifford Alg. 28 (2018). doi:10.1007/s00006-018-0833-3
[12] A. Szynal-Liana, The Horadam hybrid numbers, Discuss. Math. Gen. Alg. Appl. 38 (2018) 91–98. doi:10.7151/dmgaa.1287
[13] A. Szynal-Liana and I. W loch, The Fibonacci hybrid numbers, Util. Math. 110 (2019) 3–10.
[14] A. Szynal-Liana and I. W loch, On Jacobsthal and Jacobsthal-Lucas Hybrid Numbers, Ann. Math. Silesianae 33 (2019) 276–283. doi:10.2478/amsil-2018-0009
[15] A. Szynal-Liana and I. W loch, Introduction to Fibonacci and Lucas hybrinomials, Complex Variables and Elliptic Equations (2019). doi:10.1080/17476933.2019.1681416