Introduction to Third-Order Jacobsthal and Modified Third-Order Jacobsthal Hybrinomials
Discussiones Mathematicae. General Algebra and Applications, Tome 41 (2021) no. 1, pp. 139-152.

Voir la notice de l'article provenant de la source Library of Science

The hybrid numbers are generalization of complex, hyperbolic and dual numbers. In this paper, we introduce and study the third-order Jacobsthal and modified third-order Jacobsthal hybrinomials, i.e., polynomials, which are a generalization of the Jacobsthal hybrid numbers and the Jacobsthal-Lucas hybrid numbers, respectively.
Keywords: third-order Jacobsthal numbers, recurrence relations, complex numbers, hyperbolic numbers, dual numbers, polynomials
@article{DMGAA_2021_41_1_a11,
     author = {Cerda-Morales, Gamaliel},
     title = {Introduction to {Third-Order} {Jacobsthal} and {Modified} {Third-Order} {Jacobsthal} {Hybrinomials}},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {139--152},
     publisher = {mathdoc},
     volume = {41},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2021_41_1_a11/}
}
TY  - JOUR
AU  - Cerda-Morales, Gamaliel
TI  - Introduction to Third-Order Jacobsthal and Modified Third-Order Jacobsthal Hybrinomials
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2021
SP  - 139
EP  - 152
VL  - 41
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2021_41_1_a11/
LA  - en
ID  - DMGAA_2021_41_1_a11
ER  - 
%0 Journal Article
%A Cerda-Morales, Gamaliel
%T Introduction to Third-Order Jacobsthal and Modified Third-Order Jacobsthal Hybrinomials
%J Discussiones Mathematicae. General Algebra and Applications
%D 2021
%P 139-152
%V 41
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2021_41_1_a11/
%G en
%F DMGAA_2021_41_1_a11
Cerda-Morales, Gamaliel. Introduction to Third-Order Jacobsthal and Modified Third-Order Jacobsthal Hybrinomials. Discussiones Mathematicae. General Algebra and Applications, Tome 41 (2021) no. 1, pp. 139-152. http://geodesic.mathdoc.fr/item/DMGAA_2021_41_1_a11/

[1] G. Cerda-Morales, Identities for third order Jacobsthal quaternions, Adv. Appl. Clifford Alg. 27 (2017) 1043–1053. doi:10.1007/s00006-016-0654-1

[2] G. Cerda-Morales, On a generalization of Tribonacci quaternions, Mediterranean J. Math. 14 (2017) 1–12. doi:10.1007/s00009-017-1042-3

[3] G. Cerda-Morales, A note on modified third-order Jacobsthal numbers, Proyecciones J. Math. 39 (2020) 731–747. doi:10.22199/issn.0717-6279-2020-02-0025

[4] G. Cerda-Morales, Some results on dual third-order Jacobsthal quaternions, FILOMAT 33 (2019) 1865–1876. doi:10.2298/FIL1907865C

[5] G. Cerda-Morales, Third-order Jacobsthal generalized quaternions, J. Geom. Symmetry Phys. 50 (2018) 11–27. doi:10.7546/jgsp-50-2018-11-27

[6] C.K. Cook and M.R. Bacon, Some identities for Jacobsthal and Jacobsthal-Lucas numbers satisfying higher order recurrence relations, Ann. Math. Inform. 41 (2013) 27–39.

[7] G.B. Djordjević, Generalized Jacobsthal polynomials, Fibonacci Quart. 38 (2000) 239–243.

[8] G.B. Djordjević and H.M. Srivastava, Incomplete generalized Jacobsthal and Jacobsthal-Lucas numbers, Math. and Comp. Modelling 42 (2005) 1049–1056. doi:10.1016/j.mcm.2004.10.026

[9] A.F. Horadam, Jacobsthal representation polynomials, Fibonacci Quart. 35 (1997) 137–148.

[10] A.F. Horadam, Jacobsthal representation numbers, The Fibonacci Quarterly 43 (1996) 40–54.

[11] M.Özdemir, Introduction to hybrid numbers, Adv. Appl. Clifford Alg. 28 (2018). doi:10.1007/s00006-018-0833-3

[12] A. Szynal-Liana, The Horadam hybrid numbers, Discuss. Math. Gen. Alg. Appl. 38 (2018) 91–98. doi:10.7151/dmgaa.1287

[13] A. Szynal-Liana and I. W loch, The Fibonacci hybrid numbers, Util. Math. 110 (2019) 3–10.

[14] A. Szynal-Liana and I. W loch, On Jacobsthal and Jacobsthal-Lucas Hybrid Numbers, Ann. Math. Silesianae 33 (2019) 276–283. doi:10.2478/amsil-2018-0009

[15] A. Szynal-Liana and I. W loch, Introduction to Fibonacci and Lucas hybrinomials, Complex Variables and Elliptic Equations (2019). doi:10.1080/17476933.2019.1681416