Introduction to Third-Order Jacobsthal and Modified Third-Order Jacobsthal Hybrinomials
Discussiones Mathematicae. General Algebra and Applications, Tome 41 (2021) no. 1, pp. 139-152

Voir la notice de l'article provenant de la source Library of Science

The hybrid numbers are generalization of complex, hyperbolic and dual numbers. In this paper, we introduce and study the third-order Jacobsthal and modified third-order Jacobsthal hybrinomials, i.e., polynomials, which are a generalization of the Jacobsthal hybrid numbers and the Jacobsthal-Lucas hybrid numbers, respectively.
Keywords: third-order Jacobsthal numbers, recurrence relations, complex numbers, hyperbolic numbers, dual numbers, polynomials
@article{DMGAA_2021_41_1_a11,
     author = {Cerda-Morales, Gamaliel},
     title = {Introduction to {Third-Order} {Jacobsthal} and {Modified} {Third-Order} {Jacobsthal} {Hybrinomials}},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {139--152},
     publisher = {mathdoc},
     volume = {41},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2021_41_1_a11/}
}
TY  - JOUR
AU  - Cerda-Morales, Gamaliel
TI  - Introduction to Third-Order Jacobsthal and Modified Third-Order Jacobsthal Hybrinomials
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2021
SP  - 139
EP  - 152
VL  - 41
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2021_41_1_a11/
LA  - en
ID  - DMGAA_2021_41_1_a11
ER  - 
%0 Journal Article
%A Cerda-Morales, Gamaliel
%T Introduction to Third-Order Jacobsthal and Modified Third-Order Jacobsthal Hybrinomials
%J Discussiones Mathematicae. General Algebra and Applications
%D 2021
%P 139-152
%V 41
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2021_41_1_a11/
%G en
%F DMGAA_2021_41_1_a11
Cerda-Morales, Gamaliel. Introduction to Third-Order Jacobsthal and Modified Third-Order Jacobsthal Hybrinomials. Discussiones Mathematicae. General Algebra and Applications, Tome 41 (2021) no. 1, pp. 139-152. http://geodesic.mathdoc.fr/item/DMGAA_2021_41_1_a11/