Normalized Laplacian Spectrum of Some Q-Coronas of Two Regular Graphs
Discussiones Mathematicae. General Algebra and Applications, Tome 41 (2021) no. 1, pp. 127-138
Voir la notice de l'article provenant de la source Library of Science
In this paper we determine the normalized Laplacian spectrum of the Q-vertex corona, Q-edge corona, Q-vertex neighborhood corona, and Q-edge neighborhood corona of a connected regular graph with an arbitrary regular graph in terms of normalized Laplacian eigenvalues of the original graphs. Moreover, applying these results we find some non-regular normalized Laplacian co-spectral graphs.
Keywords:
normalized Laplacian matrix, Q -vertex corona, Q -edge corona, Q -vertex neighborhood corona, Q -edge neighborhood corona, Kronecker product, Hadamard product
@article{DMGAA_2021_41_1_a10,
author = {Das, Arpita and Panigrahi, Pratima},
title = {Normalized {Laplacian} {Spectrum} of {Some} {Q-Coronas} of {Two} {Regular} {Graphs}},
journal = {Discussiones Mathematicae. General Algebra and Applications},
pages = {127--138},
publisher = {mathdoc},
volume = {41},
number = {1},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGAA_2021_41_1_a10/}
}
TY - JOUR AU - Das, Arpita AU - Panigrahi, Pratima TI - Normalized Laplacian Spectrum of Some Q-Coronas of Two Regular Graphs JO - Discussiones Mathematicae. General Algebra and Applications PY - 2021 SP - 127 EP - 138 VL - 41 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2021_41_1_a10/ LA - en ID - DMGAA_2021_41_1_a10 ER -
%0 Journal Article %A Das, Arpita %A Panigrahi, Pratima %T Normalized Laplacian Spectrum of Some Q-Coronas of Two Regular Graphs %J Discussiones Mathematicae. General Algebra and Applications %D 2021 %P 127-138 %V 41 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGAA_2021_41_1_a10/ %G en %F DMGAA_2021_41_1_a10
Das, Arpita; Panigrahi, Pratima. Normalized Laplacian Spectrum of Some Q-Coronas of Two Regular Graphs. Discussiones Mathematicae. General Algebra and Applications, Tome 41 (2021) no. 1, pp. 127-138. http://geodesic.mathdoc.fr/item/DMGAA_2021_41_1_a10/