Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2021_41_1_a10, author = {Das, Arpita and Panigrahi, Pratima}, title = {Normalized {Laplacian} {Spectrum} of {Some} {Q-Coronas} of {Two} {Regular} {Graphs}}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {127--138}, publisher = {mathdoc}, volume = {41}, number = {1}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2021_41_1_a10/} }
TY - JOUR AU - Das, Arpita AU - Panigrahi, Pratima TI - Normalized Laplacian Spectrum of Some Q-Coronas of Two Regular Graphs JO - Discussiones Mathematicae. General Algebra and Applications PY - 2021 SP - 127 EP - 138 VL - 41 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2021_41_1_a10/ LA - en ID - DMGAA_2021_41_1_a10 ER -
%0 Journal Article %A Das, Arpita %A Panigrahi, Pratima %T Normalized Laplacian Spectrum of Some Q-Coronas of Two Regular Graphs %J Discussiones Mathematicae. General Algebra and Applications %D 2021 %P 127-138 %V 41 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGAA_2021_41_1_a10/ %G en %F DMGAA_2021_41_1_a10
Das, Arpita; Panigrahi, Pratima. Normalized Laplacian Spectrum of Some Q-Coronas of Two Regular Graphs. Discussiones Mathematicae. General Algebra and Applications, Tome 41 (2021) no. 1, pp. 127-138. http://geodesic.mathdoc.fr/item/DMGAA_2021_41_1_a10/
[1] A. Banerjee and J. Jost, On the spectrum of the normalized graph Laplacian, Linear Algebra Appl. 428 (2008) 3015–3022. doi:10.1016/j.laa.2008.01.029
[2] S. Butler and J. Grout, A construction of cospectral graphs for the normalized Laplacian, Electr. J. Combin. 18 (2011) 231pp.
[3] F.R.K. Chung, Spectral Graph Theory (CBMS. Reg. Conf. Ser. Math. 92, AMS, providence, RI, 1997).
[4] D. Cvetković, P. Rowlinson and S. Simić, An Introduction to the Theory of Graph Spectra (Cambridge University Press, 2009).
[5] A. Das and P. Panigrahi, Normalized Laplacian spectrum of different type of coronas of two regular graphs, Kragujevac J. Math. 41 (2017) 57–69.
[6] A. Das and P. Panigrahi, Normalized Laplacian spectrum of some subdivision-coronas of two regular graphs, Linear and Multilinear Algebra 65 (2017) 962–972. doi:10.1080/03081087.2016.1217976
[7] A. Das and P. Panigrahi, Normalized Laplacian spectrum of some R-coronas of two regular graphs, South. Asian Bull. Math. 42 (2018) 833–844.
[8] C. Godsil and G. Royle, Algebraic Graph Theory (Springer, New York, 2001).
[9] F. Harary, Graph Theory (Addison-Wesley, Reading, PA, 1969).
[10] R.A. Horn and C.R. Johnson, Topics in Matrix Analysis (Cambridge University Press, Cambridge, 1991).
[11] J. Huang and S.C. Li, On the normalised Laplacian spectrum, degree-Kirchhoff index and spanning trees of graphs, Bull. Aust. Math. Soc. 91 (2015) 353–367. doi:10.1017/S0004972715000027
[12] H.H. Li and J.S. Li, A note on the normalized Laplacian spectra, Taiwanese J. Math. 15 (2011) 129–139.
[13] Q. Liu, J.B. Liu and J. Cao, Further results on resistance distance and Kirchhoff index in electric networks (Discrete Dynamics in Nature and Society, 2016). doi:10.1155/2016/4682527
[14] C. McLeman and E. McNicholas, Spectra of coronae, Linear Algebra Appl. 435 (2011) 998–1007. doi:10.1016/j.laa.2011.02.007
[15] E.R. Vandam and W.H. Haemers, Which graphs are determined by their spectrum ?, Linear Algebra Appl. 373 (2003) 241–272. doi:10.1016/S0024-3795(03)00483-X