Normalized Laplacian Spectrum of Some Q-Coronas of Two Regular Graphs
Discussiones Mathematicae. General Algebra and Applications, Tome 41 (2021) no. 1, pp. 127-138.

Voir la notice de l'article provenant de la source Library of Science

In this paper we determine the normalized Laplacian spectrum of the Q-vertex corona, Q-edge corona, Q-vertex neighborhood corona, and Q-edge neighborhood corona of a connected regular graph with an arbitrary regular graph in terms of normalized Laplacian eigenvalues of the original graphs. Moreover, applying these results we find some non-regular normalized Laplacian co-spectral graphs.
Keywords: normalized Laplacian matrix, Q -vertex corona, Q -edge corona, Q -vertex neighborhood corona, Q -edge neighborhood corona, Kronecker product, Hadamard product
@article{DMGAA_2021_41_1_a10,
     author = {Das, Arpita and Panigrahi, Pratima},
     title = {Normalized {Laplacian} {Spectrum} of {Some} {Q-Coronas} of {Two} {Regular} {Graphs}},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {127--138},
     publisher = {mathdoc},
     volume = {41},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2021_41_1_a10/}
}
TY  - JOUR
AU  - Das, Arpita
AU  - Panigrahi, Pratima
TI  - Normalized Laplacian Spectrum of Some Q-Coronas of Two Regular Graphs
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2021
SP  - 127
EP  - 138
VL  - 41
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2021_41_1_a10/
LA  - en
ID  - DMGAA_2021_41_1_a10
ER  - 
%0 Journal Article
%A Das, Arpita
%A Panigrahi, Pratima
%T Normalized Laplacian Spectrum of Some Q-Coronas of Two Regular Graphs
%J Discussiones Mathematicae. General Algebra and Applications
%D 2021
%P 127-138
%V 41
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2021_41_1_a10/
%G en
%F DMGAA_2021_41_1_a10
Das, Arpita; Panigrahi, Pratima. Normalized Laplacian Spectrum of Some Q-Coronas of Two Regular Graphs. Discussiones Mathematicae. General Algebra and Applications, Tome 41 (2021) no. 1, pp. 127-138. http://geodesic.mathdoc.fr/item/DMGAA_2021_41_1_a10/

[1] A. Banerjee and J. Jost, On the spectrum of the normalized graph Laplacian, Linear Algebra Appl. 428 (2008) 3015–3022. doi:10.1016/j.laa.2008.01.029

[2] S. Butler and J. Grout, A construction of cospectral graphs for the normalized Laplacian, Electr. J. Combin. 18 (2011) 231pp.

[3] F.R.K. Chung, Spectral Graph Theory (CBMS. Reg. Conf. Ser. Math. 92, AMS, providence, RI, 1997).

[4] D. Cvetković, P. Rowlinson and S. Simić, An Introduction to the Theory of Graph Spectra (Cambridge University Press, 2009).

[5] A. Das and P. Panigrahi, Normalized Laplacian spectrum of different type of coronas of two regular graphs, Kragujevac J. Math. 41 (2017) 57–69.

[6] A. Das and P. Panigrahi, Normalized Laplacian spectrum of some subdivision-coronas of two regular graphs, Linear and Multilinear Algebra 65 (2017) 962–972. doi:10.1080/03081087.2016.1217976

[7] A. Das and P. Panigrahi, Normalized Laplacian spectrum of some R-coronas of two regular graphs, South. Asian Bull. Math. 42 (2018) 833–844.

[8] C. Godsil and G. Royle, Algebraic Graph Theory (Springer, New York, 2001).

[9] F. Harary, Graph Theory (Addison-Wesley, Reading, PA, 1969).

[10] R.A. Horn and C.R. Johnson, Topics in Matrix Analysis (Cambridge University Press, Cambridge, 1991).

[11] J. Huang and S.C. Li, On the normalised Laplacian spectrum, degree-Kirchhoff index and spanning trees of graphs, Bull. Aust. Math. Soc. 91 (2015) 353–367. doi:10.1017/S0004972715000027

[12] H.H. Li and J.S. Li, A note on the normalized Laplacian spectra, Taiwanese J. Math. 15 (2011) 129–139.

[13] Q. Liu, J.B. Liu and J. Cao, Further results on resistance distance and Kirchhoff index in electric networks (Discrete Dynamics in Nature and Society, 2016). doi:10.1155/2016/4682527

[14] C. McLeman and E. McNicholas, Spectra of coronae, Linear Algebra Appl. 435 (2011) 998–1007. doi:10.1016/j.laa.2011.02.007

[15] E.R. Vandam and W.H. Haemers, Which graphs are determined by their spectrum ?, Linear Algebra Appl. 373 (2003) 241–272. doi:10.1016/S0024-3795(03)00483-X