Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2021_41_1_a0, author = {Sundarayya, P. and Ravi Kishore, T.}, title = {Equivalent {Forms} for a {Poset} to {Be} {Modular} {Poset}}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {5--13}, publisher = {mathdoc}, volume = {41}, number = {1}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2021_41_1_a0/} }
TY - JOUR AU - Sundarayya, P. AU - Ravi Kishore, T. TI - Equivalent Forms for a Poset to Be Modular Poset JO - Discussiones Mathematicae. General Algebra and Applications PY - 2021 SP - 5 EP - 13 VL - 41 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2021_41_1_a0/ LA - en ID - DMGAA_2021_41_1_a0 ER -
Sundarayya, P.; Ravi Kishore, T. Equivalent Forms for a Poset to Be Modular Poset. Discussiones Mathematicae. General Algebra and Applications, Tome 41 (2021) no. 1, pp. 5-13. http://geodesic.mathdoc.fr/item/DMGAA_2021_41_1_a0/
[1] G. Brikho, Lattice Theory, American Mathematical Society (Coloquium Publications American Mathematical Society, 1961).
[2] G. Gratzer, General Lattice Theory (Birkhauser, New York, 1998).
[3] J. Larmerova and J. Rachunek, Translations of distributive and modular ordered sets, Acta Univ. Palacki Olomonc 91 (1988) 13–23.
[4] S. Burris and H.P. Sankappanavar, A Course in Universal Algebra (Springer, 1981).
[5] B.N. Waphare and V.V. Joshi, On uniquely complemented posets, Order 22 (2005) 11–20. doi:10.1007//s11083-005-9002-0