Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2020_40_2_a8, author = {Boughaba, Souhila and Boussayoud, Ali and Saba, Nabiha}, title = {Generating {Functions} of the {Products} of {Bivariate} {Complex} {Fibonacci} {Polynomials} with {Gaussian} {Numbers} and {Polynomials}}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {245--265}, publisher = {mathdoc}, volume = {40}, number = {2}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2020_40_2_a8/} }
TY - JOUR AU - Boughaba, Souhila AU - Boussayoud, Ali AU - Saba, Nabiha TI - Generating Functions of the Products of Bivariate Complex Fibonacci Polynomials with Gaussian Numbers and Polynomials JO - Discussiones Mathematicae. General Algebra and Applications PY - 2020 SP - 245 EP - 265 VL - 40 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2020_40_2_a8/ LA - en ID - DMGAA_2020_40_2_a8 ER -
%0 Journal Article %A Boughaba, Souhila %A Boussayoud, Ali %A Saba, Nabiha %T Generating Functions of the Products of Bivariate Complex Fibonacci Polynomials with Gaussian Numbers and Polynomials %J Discussiones Mathematicae. General Algebra and Applications %D 2020 %P 245-265 %V 40 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGAA_2020_40_2_a8/ %G en %F DMGAA_2020_40_2_a8
Boughaba, Souhila; Boussayoud, Ali; Saba, Nabiha. Generating Functions of the Products of Bivariate Complex Fibonacci Polynomials with Gaussian Numbers and Polynomials. Discussiones Mathematicae. General Algebra and Applications, Tome 40 (2020) no. 2, pp. 245-265. http://geodesic.mathdoc.fr/item/DMGAA_2020_40_2_a8/
[1] A. Abderrezzak, Généralisation de la transformation d’Euler d’une série formelle, Adv. Math. 103 (1994) 180–195. doi:10.1006/aima.1994.1008
[2] M. Asci and E. Gurel, On Bivariate Complex Fibonacci and Lucas Polynomials, Conference on Mathematical Sciences ICM 2012, March 11-14, 2012.
[3] M. Asci and E. Gurel, Gaussian Jacobsthal and Gaussian Jacobsthal Lucas polynomials, Notes Number Theory Discrete Math. 19 (2013) 25–36.
[4] C. Bolat and H. Kose, On the properties of k-Fibonacci numbers, Int. J. Contemp. Math. Sci. 5 (2010) 1097–1105.
[5] S. Boughaba, A. Boussayoud, S. Araci and M. Kerada, Construction of Generating Functions of Gaussian Fibonacci Numbers and Polynomials, Univ. J. Math. Appl. (Submitted).
[6] S. Boughaba and A. Boussayoud, On some identities and generating function of Both K-jacobsthal numbers and symmetric functions in several variables, Konuralp J. Math. 7 (2019) 235–242.
[7] S. Boughaba and A. Boussayoud, Construction of symmetric functions of generalized Fibonacci numbers, Tamap J. Math. Stat. 3 (2019) 1–8. doi:10.29371/2019.16.SI01
[8] S. Boughaba, A. Boussayoud and Kh. Boubellouta, Generating functions of modified Pell numbers and bivariate complex Fibonacci polynomials, Turkish J. Anal. Number 7 (2019) 113–116. doi:10.12691/tjant-7-4-3
[9] A. Boussayoud, On some identities and generating functions for Pell-Lucas numbers, Online J. Anal. Comb. 12 (2017) 1–10.
[10] A. Boussayoud, L’action de L’opérateur \(δ_{e1e2}^k\) sur la Série \(∑_{n=0}^∞S_n(A)e_1^nz^n\), Doctoral dissertation (Mohamed Seddik Ben Yahia University, Jijel, Algeria, 2017).
[11] A. Boussayoud and N. Harrouche, Complete symmetric functions and k-Fibonacci numbers, Commun. Appl. Anal. 20 (2016) 457–465. doi:10.12732/caa.v20i4.1
[12] A. Boussayoud, M. Kerada and M. Boulyer, A simple and accurate method for determination of some generalized sequence of numbers, Int. J. Pure Appl. Math. 108 (2016) 503–511. doi:10.12732/ijpam.v108i3.3
[13] A. Boussayoud, M. Kerada and R. Sahali, Symmetrizing operations on some orthogonal polynomails, Int. Electron. J. Pure Appl. Math. 9 (2015) 191–199. doi:10.12732/iejpam.v9i3.8
[14] A. Boussayoud and M. Kerada, Symmetric and generating functions, Int. Electron. J. Pure Appl. Math. 7 (2014) 195-203. doi:10.12732/iejpam.v7i4.5
[15] A. Boussayoud, M. Kerada, R. Sahali and W. Rouibah, Some applications on generating functions, J. Concr. Appl. Math. 12 (2014) 321–330.
[16] A. Boussayoud and R. Sahali, The application of the operator \(L_{b_1b_2}^{-k}\) in the series \(∑_{j=0}^{+∞}a_jb_1^jz^j\), J. Adv. Res. Appl. Math. 7 (2015) 68–75.
[17] G.B. Djordjevic, Generating functions of the incomplete generalized Fibonacci and generalized Lucas numbers, Fibonacci Q. 42 (2004) 106–113.
[18] G.B. Djordjevic and H.M. Srivastava, Incomplete generalized Jacobsthal and Jacobsthal-Lucas numbers, Math. Comput. Modelling 42 (2005) 1049–1056. doi:10.1016/j.mcm.2004.10.026
[19] S. Falcon and A. Plaza, On the Fibonacci k-numbers, Chaos Solitons Fractals 32 (2007) 1615–1624. doi:10.1016/j.chaos.2006.09.022
[20] S. Falcon and A. Plaza, k-Fibonacci sequences and polynomials and their derivatives, Chaos Solitons Fractals 39 (2009) 1005–1019. doi:10.1016/j.chaos.2007.03.007
[21] S. Falcon and A. Plaza, The k-Fibonacci sequence and the Pascal 2-triangle, Chaos Solitons Fractals 33 (2008) 38–49. doi:10.1016/j.chaos.2006.10.022
[22] D. Foata and G.-N. Han, Nombres de Fibonacci et polynômes orthogonaux, Leonardo Fibonacci : il tempo, le opere, l’eredità scientifica (1994) 179–200.
[23] S. Halici and S. Oz, On some Gaussian Pell and Pell-Lucas numbers, Ordu Univ. J. Sci. Tech. 6 (2016) 8–18.
[24] S. Halici and S. Oz, On Gaussian Pell polynomials and their some properties, Palest. J. Math. 7 (2018) 251–256.
[25] A.F. Horadam, Generating functions for powers of a certain generalized sequence of numbers, Duke Math. J. 32 (1965) 437–446. doi:10.1215/S0012-7094-65-03244-8
[26] A.F. Horadam and E.M. Horadam, Roots of recurrence-generated polynomials, Fibonacci Quart. 20 (1982) 219–226.
[27] A.F. Horadam and J. M. Mahon, Pell and Pell-Lucas polynomials, Fibonacci Quarterly 23 (1985) 7–20.
[28] J.H. Jordan, Gaussian Fibonacci and Lucas numbers, Fibonacci Quarterly 3 (1965) 315–318.
[29] D.V. Kruchinin and V.V. Kruchinin, Application of a composition of generating functions for obtaining explicit formulas of polynomials, J. Math. Anal. Appl. 404 (2013) 161–171. doi:10.1016/j.jmaa.2013.03.009
[30] I.G. Macdonald, Symmetric Functions and Hall Polynomias (Oxford University Press, Oxford, 1979).
[31] I. Mezo, Several generating functions for second-order recurrence sequences, J. Integer Seq. 12 (2009) 1–16.
[32] A. Pintér and H.M. Srivastava, Generating functions of the incomplete Fibonacci and Lucas numbers, Rend. Circ. Mat. Palermo 48 (1999) 591–596. doi:10.1007/BF02844348
[33] D. Tasci and M. Cetin Firengiz, Incomplete Fibonacci and Lucas p-numbers, Math. Comput. Modelling 52 (2010) 1763–1770. doi:10.1016/j.mcm.2010.07.003