The Cayley Sum Graph of Ideals of a Lattice
Discussiones Mathematicae. General Algebra and Applications, Tome 40 (2020) no. 2, pp. 217-230.

Voir la notice de l'article provenant de la source Library of Science

Let L be a lattice, ℑ(L) be the set of ideals of L and S be a subset of ℑ(L). In this paper, we introduce an undirected Cayley graph of L, denoted by Γ_L,S with elements of ℑ(L) as the vertex set and, for two distinct vertices I and J, I is adjacent to J if and only if there is an element K of S such that I ∨ K = J or J ∨ K = I. We study some basic properties of the graph Γ_L,S such as connectivity, girth and clique number. Moreover, we investigate the planarity, outerplanarity and ring graph of Γ_L,S.
Keywords: lattice, Cayley graph, ring graph, outerplanar graph
@article{DMGAA_2020_40_2_a6,
     author = {Afkhami, Mojgan and Hassankhani, Mehdi and Khashyarmanesh, Kazem},
     title = {The {Cayley} {Sum} {Graph} of {Ideals} of a {Lattice}},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {217--230},
     publisher = {mathdoc},
     volume = {40},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2020_40_2_a6/}
}
TY  - JOUR
AU  - Afkhami, Mojgan
AU  - Hassankhani, Mehdi
AU  - Khashyarmanesh, Kazem
TI  - The Cayley Sum Graph of Ideals of a Lattice
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2020
SP  - 217
EP  - 230
VL  - 40
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2020_40_2_a6/
LA  - en
ID  - DMGAA_2020_40_2_a6
ER  - 
%0 Journal Article
%A Afkhami, Mojgan
%A Hassankhani, Mehdi
%A Khashyarmanesh, Kazem
%T The Cayley Sum Graph of Ideals of a Lattice
%J Discussiones Mathematicae. General Algebra and Applications
%D 2020
%P 217-230
%V 40
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2020_40_2_a6/
%G en
%F DMGAA_2020_40_2_a6
Afkhami, Mojgan; Hassankhani, Mehdi; Khashyarmanesh, Kazem. The Cayley Sum Graph of Ideals of a Lattice. Discussiones Mathematicae. General Algebra and Applications, Tome 40 (2020) no. 2, pp. 217-230. http://geodesic.mathdoc.fr/item/DMGAA_2020_40_2_a6/

[1] M. Afkhami and K. Khashyarmanesh, The comaximal graph of a lattice, Bull. Malays. Math. Sci. Soc. 37 (2014) 261–269.

[2] M. Afkhami, Z. Barati and K. Khashyarmanesh, Cayley graphs of partially ordered sets, J. Algebras and its Appl. 12 (2013) 1250184–1250197. doi:10.1142/S0219498812501848

[3] M. Afkhami, Z. Barati, K. Khashyarmanesh and N. Paknejad, Cayley sum graphs of ideals of a commutative ring, J. Aust. Math. Soc. 96 (2014) 289–302. doi:10.1017/S144678871400007X

[4] M. Aigner, Combinatorial Theory (Springer-verlag, New York, 1997).

[5] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (American Elsevier, New York, 1976).

[6] A. Cayley, The theory of groups: graphical representations, Amer. J. Math. 1 (1878) 174–176.

[7] G. Cooperman, L. Finkelstein and N. Sarawagi, Applications of Cayley graphs, Appl. Algebra and Error-Correcting Codes (1990) 367–378.

[8] T. Donnellan, Lattice Theory (Pergamon Press, Oxford, 1968).

[9] I. Gitler, E. Reyes and R.H. Villarreal, Ring graphs and complete intersection toric ideals, Discrete Math. 310 (2010) 430–441. doi:10.1016/j.disc.2009.03.020

[10] A.V. Kelarev, Graph Algebras and Automata (Marcel Dekker, New York, 2003).

[11] A.V. Kelarev, Labelled Cayley graphs and minimal automata, Australas. J. Combin. 30 (2004) 95–101.

[12] A.V. Kelarev and S.J. Quinn, A combinatorial property and Cayley graphs of semi-groups, Semigroup Forum 66 (2003) 89–96. doi:10.1007/s002330010162

[13] A.V. Kelarev, J. Ryan and Yearwood, Cayley graphs as classifiers for data mining: The influence of asymmetries, Discrete Math. 309 (2009) 5360–5369. doi:10.1016/j.disc.2008.11.030

[14] E. Konstantinova, Some problems on Cayley graphs, Linear Algebra Appl. 429 (2008) 2754–2769. doi:10.1016/j.laa.2008.05.010

[15] C.H. Li and C.E. Praeger, On the isomorphism problem for finite Cayley graphs of bounded valency, European J. Combin. 20 (1999) 1801–1808. doi:10.1006/eujc.1998.0291

[16] J.B. Nation, Notes on Lattice Theory, Cambridge Studies in Advanced Mathematics, vol. 60 (Cambridge University Press, Cambridge, 1998).

[17] C.E. Praeger, Finite transitive permutation groups and finite vertex-transitive groups, Graph Symmetry: Algebraic Methods and Applications (Kluwer, Dordrecht, 1997) 277–318.

[18] A. Thomson and S. Zhou, Gossiping and routing in undirected triple-loop networks, Networks 55 (2010) 341–349. doi:10.1002/net.20327

[19] W. Xiao, Some results on diameters of Cayley graphs, Discrete Appl. Math. 154 (2006) 1640–1644. doi:10.1016/j.dam.2005.11.008

[20] S. Zhou, A class of arc-transitive Cayley graphs as models for interconnection networks, SIAM J. Discrete Math. 23 (2009) 694–714. doi:10.1137/06067434X