Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2020_40_2_a6, author = {Afkhami, Mojgan and Hassankhani, Mehdi and Khashyarmanesh, Kazem}, title = {The {Cayley} {Sum} {Graph} of {Ideals} of a {Lattice}}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {217--230}, publisher = {mathdoc}, volume = {40}, number = {2}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2020_40_2_a6/} }
TY - JOUR AU - Afkhami, Mojgan AU - Hassankhani, Mehdi AU - Khashyarmanesh, Kazem TI - The Cayley Sum Graph of Ideals of a Lattice JO - Discussiones Mathematicae. General Algebra and Applications PY - 2020 SP - 217 EP - 230 VL - 40 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2020_40_2_a6/ LA - en ID - DMGAA_2020_40_2_a6 ER -
%0 Journal Article %A Afkhami, Mojgan %A Hassankhani, Mehdi %A Khashyarmanesh, Kazem %T The Cayley Sum Graph of Ideals of a Lattice %J Discussiones Mathematicae. General Algebra and Applications %D 2020 %P 217-230 %V 40 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGAA_2020_40_2_a6/ %G en %F DMGAA_2020_40_2_a6
Afkhami, Mojgan; Hassankhani, Mehdi; Khashyarmanesh, Kazem. The Cayley Sum Graph of Ideals of a Lattice. Discussiones Mathematicae. General Algebra and Applications, Tome 40 (2020) no. 2, pp. 217-230. http://geodesic.mathdoc.fr/item/DMGAA_2020_40_2_a6/
[1] M. Afkhami and K. Khashyarmanesh, The comaximal graph of a lattice, Bull. Malays. Math. Sci. Soc. 37 (2014) 261–269.
[2] M. Afkhami, Z. Barati and K. Khashyarmanesh, Cayley graphs of partially ordered sets, J. Algebras and its Appl. 12 (2013) 1250184–1250197. doi:10.1142/S0219498812501848
[3] M. Afkhami, Z. Barati, K. Khashyarmanesh and N. Paknejad, Cayley sum graphs of ideals of a commutative ring, J. Aust. Math. Soc. 96 (2014) 289–302. doi:10.1017/S144678871400007X
[4] M. Aigner, Combinatorial Theory (Springer-verlag, New York, 1997).
[5] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (American Elsevier, New York, 1976).
[6] A. Cayley, The theory of groups: graphical representations, Amer. J. Math. 1 (1878) 174–176.
[7] G. Cooperman, L. Finkelstein and N. Sarawagi, Applications of Cayley graphs, Appl. Algebra and Error-Correcting Codes (1990) 367–378.
[8] T. Donnellan, Lattice Theory (Pergamon Press, Oxford, 1968).
[9] I. Gitler, E. Reyes and R.H. Villarreal, Ring graphs and complete intersection toric ideals, Discrete Math. 310 (2010) 430–441. doi:10.1016/j.disc.2009.03.020
[10] A.V. Kelarev, Graph Algebras and Automata (Marcel Dekker, New York, 2003).
[11] A.V. Kelarev, Labelled Cayley graphs and minimal automata, Australas. J. Combin. 30 (2004) 95–101.
[12] A.V. Kelarev and S.J. Quinn, A combinatorial property and Cayley graphs of semi-groups, Semigroup Forum 66 (2003) 89–96. doi:10.1007/s002330010162
[13] A.V. Kelarev, J. Ryan and Yearwood, Cayley graphs as classifiers for data mining: The influence of asymmetries, Discrete Math. 309 (2009) 5360–5369. doi:10.1016/j.disc.2008.11.030
[14] E. Konstantinova, Some problems on Cayley graphs, Linear Algebra Appl. 429 (2008) 2754–2769. doi:10.1016/j.laa.2008.05.010
[15] C.H. Li and C.E. Praeger, On the isomorphism problem for finite Cayley graphs of bounded valency, European J. Combin. 20 (1999) 1801–1808. doi:10.1006/eujc.1998.0291
[16] J.B. Nation, Notes on Lattice Theory, Cambridge Studies in Advanced Mathematics, vol. 60 (Cambridge University Press, Cambridge, 1998).
[17] C.E. Praeger, Finite transitive permutation groups and finite vertex-transitive groups, Graph Symmetry: Algebraic Methods and Applications (Kluwer, Dordrecht, 1997) 277–318.
[18] A. Thomson and S. Zhou, Gossiping and routing in undirected triple-loop networks, Networks 55 (2010) 341–349. doi:10.1002/net.20327
[19] W. Xiao, Some results on diameters of Cayley graphs, Discrete Appl. Math. 154 (2006) 1640–1644. doi:10.1016/j.dam.2005.11.008
[20] S. Zhou, A class of arc-transitive Cayley graphs as models for interconnection networks, SIAM J. Discrete Math. 23 (2009) 694–714. doi:10.1137/06067434X