Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2020_40_2_a12, author = {Rao, M. Murali Krishna}, title = {r-Ideals and {m-k-Ideals} in {Inclines}}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {297--309}, publisher = {mathdoc}, volume = {40}, number = {2}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2020_40_2_a12/} }
Rao, M. Murali Krishna. r-Ideals and m-k-Ideals in Inclines. Discussiones Mathematicae. General Algebra and Applications, Tome 40 (2020) no. 2, pp. 297-309. http://geodesic.mathdoc.fr/item/DMGAA_2020_40_2_a12/
[1] P.J. Allen, A fundamental theorem of homomorphism for semirings, Proc. Amer. Math. Soc. 21 (1969) 412–416.
[2] S.S. Ahn, Y.B. Jun and H.S. Kim, Ideals and quotients of incline algebras, Comm. Korean Math. Soc. 16 (2001) 2573–583.
[3] S.S. Ahn and H.S. Kim, On r-ideals in incline algebras, Comm. Korean Math. Soc. 17 (2002) 229–235.
[4] Z.Q. Cao, K.H. Kim and F.W. Roush, Incline Algebra and Applications (John Wiley and Sons, New York, 1984).
[5] 4 K.H. Kim and F.W. Roush, Inclines and incline matrices; a survey, Linear Alg. Appl. 379 (2004) 457–473.
[6] 5 A.R. Meenakshi and S. Anbalagan, On regular elements in an incline, Int. J. Math. and Math. Sci. (2010) Article ID 903063, 12 pages.
[7] M. Murali Krishna Rao, Γ-semiring with identity, Discuss. Math. General Alg. and Appl. 37 (2017) 189–207.
[8] M. Murali Krishna Rao, The Jacobson radical of Γ-semiring, Southeast Asian Bull. Math. 23 (1999) 127–134.
[9] M. Murali Krishna Rao and B. Venkateswarlu, Regular Γ-incline and field Γ-semigroup, Novi Sad J. Math. 45 (2015) 155–171.
[10] M. Murali Krishna Rao, Bi-interior ideals in semigroups, Discuss. Math. General Alg. and Appl. 38 (2018) 69–78.
[11] M. Murali Krishna Rao, Bi-interior ideals in Γ-semirings, Discuss. Math. General Alg. and Appl. 38 (2018) 239–254.
[12] M. Murali Krishna Rao, Ideals in ordered Γ-semirings, Discuss. Math. General Alg. and Appl. 38 (2018) 47–68.
[13] M. Murali Krishna Rao, A study of generalization of bi-ideal, quasi-ideal and interior ideal of semigroup, Math. Morovica 22 (2018) 103–115.
[14] M. Murali Krishna Rao, A study of bi-quasi-interior ideal as a new generalization of ideal of generalization of semiring, Bull. Int. Math. Virtual Inst. 8 (2018) 519–535.
[15] M. Murali Krishna Rao, A study of quasi-interior ideal of semiring, Bull. Int. Math. Virtual Inst. 2 (2019) 287–300.
[16] M. Murali Krishna Rao, Left bi-quasi ideals of semirings, Bull. Int. Math. Virtual Inst. 8 (2018) 45–53.
[17] M. Murali Krishna Rao, B. Venkateswarlu and N. Rafi, Left bi-quasi-ideals of Γ-semirings, Asia Pacific J. Math. 4 (2017) 144–153.
[18] M. Murali Krishna Rao, Bi-quasi-ideals and fuzzy bi-quasi ideals of Γ-semigroups, Bull. Int. Math. Virtual Inst. 7 (2017) 231–242.
[19] M. Murali Krishna Rao, Γ-semirings-I, Southeast Asian Bull. Math. 19 (1995) 49–54.
[20] M. Murali Krishna Rao and B. Venkateswarlu, Right derivation of ordered Γ-semirings, Discuss. Math. Gen. Alg. and Appl. 36 (2016) 209–221. doi:10.7151/dmgaa.1258
[21] M. Murali Krishna Rao and B. Venkateswarlu, On generalized right derivations of Γ-incline, J. Int. Math. Virtual Inst. 6 (2016) 31–47.
[22] M. Murali Krishna Rao and B. Venkateswarlu, Zero divisors free Γ-semiring, Bull. Int. Math. Virtual Inst. 8 (2018) 37–43. doi:10.7251/BIMVI1801037R
[23] M. Murali Krishna Rao, B. Venkateswarlu and N. Rafi, r-ideals in Γ-incline, Asia Pac. J. Math. 6 (2019) 1–10.
[24] M. Murali Krishna Rao, B. Venkateswarlu and N. Rafi, Fuzzy r-ideals in Γ-incline, Ann. Fuzzy Math. and Inform. 13 (2019) 253–276.
[25] H.S. Vandiver, Note on a simple type of algebra in which the cancellation law of addition does not hold, Bull. Amer. Math. 40 (1934) 914–920.