Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2020_40_2_a0, author = {Lehtonen, Erkko and Manyuen, Chaowat}, title = {Graph {Varieties} {Axiomatized} by {Semimedial,} {Medial,} and {Some} {Other} {Groupoid} {Identities}}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {143--157}, publisher = {mathdoc}, volume = {40}, number = {2}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2020_40_2_a0/} }
TY - JOUR AU - Lehtonen, Erkko AU - Manyuen, Chaowat TI - Graph Varieties Axiomatized by Semimedial, Medial, and Some Other Groupoid Identities JO - Discussiones Mathematicae. General Algebra and Applications PY - 2020 SP - 143 EP - 157 VL - 40 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2020_40_2_a0/ LA - en ID - DMGAA_2020_40_2_a0 ER -
%0 Journal Article %A Lehtonen, Erkko %A Manyuen, Chaowat %T Graph Varieties Axiomatized by Semimedial, Medial, and Some Other Groupoid Identities %J Discussiones Mathematicae. General Algebra and Applications %D 2020 %P 143-157 %V 40 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGAA_2020_40_2_a0/ %G en %F DMGAA_2020_40_2_a0
Lehtonen, Erkko; Manyuen, Chaowat. Graph Varieties Axiomatized by Semimedial, Medial, and Some Other Groupoid Identities. Discussiones Mathematicae. General Algebra and Applications, Tome 40 (2020) no. 2, pp. 143-157. http://geodesic.mathdoc.fr/item/DMGAA_2020_40_2_a0/
[1] B.A. Davey, P.M. Idziak, W.A. Lampe and G.F. McNulty, Dualizability and graph algebras, Discrete Math. 214 (2000) 145–172. doi:10.1016/S0012-365X(99)00225-3
[2] K. Denecke, M. Erné and S.L. Wismath (eds.), Galois connections and applications, Math. Appl., vol. 565 (Kluwer Academic Publishers, Dordrecht, 2004). doi:10.1007/978-1-4020-1898-5
[3] E.W. Kiss, R. Pöschel and P. Pröhle, Subvarieties of varieties generated by graph algebras, Acta Sci. Math. (Szeged) 54 (1990) 57–75.
[4] T. Poomsa-ard, Hyperidentities in associative graph algebras, Discuss. Math. Gen. Algebra Appl. 20 (2000) 169–182. doi:10.7151/dmgaa.1014
[5] T. Poomsa-ard and W. Hemvong, Hyperidentities in left self-distributive graph algebras, Thai J. Math. 4 (2006) 197–208.
[6] T. Poomsa-ard and W. Hemvong, Hyperidentities in right self-distributive graph algebras of type (2, 0), Southeast Asian Bull. Math. 32 (2008) 1125–1136.
[7] R. Pöschel, The equational logic for graph algebras, Z. Math. Logik Grundlag. Math. 35 (1989) 273–282. doi:10.1002/malq.19890350311
[8] R. Pöschel, Graph algebras and graph varieties, Algebra Universalis 27 (1990) 559–577. doi:10.1007/BF01189000
[9] R. Pöschel and W. Wessel, Classes of graphs definable by graph algebra identities or quasi-identities, Comment. Math. Univ. Carolin. 28 (1987) 581–592. http://dml.cz/handle/10338.dmlcz/106570
[10] C.R. Shallon, Non-finitely based binary algebras derived from lattices, Ph.D. thesis, (University of California, Los Angeles, 1979).