Graph Varieties Axiomatized by Semimedial, Medial, and Some Other Groupoid Identities
Discussiones Mathematicae. General Algebra and Applications, Tome 40 (2020) no. 2, pp. 143-157.

Voir la notice de l'article provenant de la source Library of Science

Directed graphs without multiple edges can be represented as algebras of type (2, 0), so-called graph algebras. A graph is said to satisfy an identity if the corresponding graph algebra does, and the set of all graphs satisfying a set of identities is called a graph variety. We describe the graph varieties axiomatized by certain groupoid identities (medial, semimedial, autodistributive, commutative, idempotent, unipotent, zeropotent, alternative).
Keywords: graph algebra, groupoid, identities, semimediality, mediality
@article{DMGAA_2020_40_2_a0,
     author = {Lehtonen, Erkko and Manyuen, Chaowat},
     title = {Graph {Varieties} {Axiomatized} by {Semimedial,} {Medial,} and {Some} {Other} {Groupoid} {Identities}},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {143--157},
     publisher = {mathdoc},
     volume = {40},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2020_40_2_a0/}
}
TY  - JOUR
AU  - Lehtonen, Erkko
AU  - Manyuen, Chaowat
TI  - Graph Varieties Axiomatized by Semimedial, Medial, and Some Other Groupoid Identities
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2020
SP  - 143
EP  - 157
VL  - 40
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2020_40_2_a0/
LA  - en
ID  - DMGAA_2020_40_2_a0
ER  - 
%0 Journal Article
%A Lehtonen, Erkko
%A Manyuen, Chaowat
%T Graph Varieties Axiomatized by Semimedial, Medial, and Some Other Groupoid Identities
%J Discussiones Mathematicae. General Algebra and Applications
%D 2020
%P 143-157
%V 40
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2020_40_2_a0/
%G en
%F DMGAA_2020_40_2_a0
Lehtonen, Erkko; Manyuen, Chaowat. Graph Varieties Axiomatized by Semimedial, Medial, and Some Other Groupoid Identities. Discussiones Mathematicae. General Algebra and Applications, Tome 40 (2020) no. 2, pp. 143-157. http://geodesic.mathdoc.fr/item/DMGAA_2020_40_2_a0/

[1] B.A. Davey, P.M. Idziak, W.A. Lampe and G.F. McNulty, Dualizability and graph algebras, Discrete Math. 214 (2000) 145–172. doi:10.1016/S0012-365X(99)00225-3

[2] K. Denecke, M. Erné and S.L. Wismath (eds.), Galois connections and applications, Math. Appl., vol. 565 (Kluwer Academic Publishers, Dordrecht, 2004). doi:10.1007/978-1-4020-1898-5

[3] E.W. Kiss, R. Pöschel and P. Pröhle, Subvarieties of varieties generated by graph algebras, Acta Sci. Math. (Szeged) 54 (1990) 57–75.

[4] T. Poomsa-ard, Hyperidentities in associative graph algebras, Discuss. Math. Gen. Algebra Appl. 20 (2000) 169–182. doi:10.7151/dmgaa.1014

[5] T. Poomsa-ard and W. Hemvong, Hyperidentities in left self-distributive graph algebras, Thai J. Math. 4 (2006) 197–208.

[6] T. Poomsa-ard and W. Hemvong, Hyperidentities in right self-distributive graph algebras of type (2, 0), Southeast Asian Bull. Math. 32 (2008) 1125–1136.

[7] R. Pöschel, The equational logic for graph algebras, Z. Math. Logik Grundlag. Math. 35 (1989) 273–282. doi:10.1002/malq.19890350311

[8] R. Pöschel, Graph algebras and graph varieties, Algebra Universalis 27 (1990) 559–577. doi:10.1007/BF01189000

[9] R. Pöschel and W. Wessel, Classes of graphs definable by graph algebra identities or quasi-identities, Comment. Math. Univ. Carolin. 28 (1987) 581–592. http://dml.cz/handle/10338.dmlcz/106570

[10] C.R. Shallon, Non-finitely based binary algebras derived from lattices, Ph.D. thesis, (University of California, Los Angeles, 1979).