Selected Properties of Some Generalizations of BCK Algebras
Discussiones Mathematicae. General Algebra and Applications, Tome 40 (2020) no. 1, pp. 89-103.

Voir la notice de l'article provenant de la source Library of Science

The notion of a RM algebra, introduced recently, is a generalization of many other algebras of logic. The class of RM algebras contains (weak-)BCC algebras, BCH algebras, BCI algebras, BCK algebras and many others. A RM algebra is an algebra A = (A; →, 1) of type (2, 0) satisfying the identities: x → x = 1 and 1 → x = x. In this paper we study the set of maximal elements of a RM algebra, branches of a RM algebra and moreover translation deductive systems of a RM algebra giving so called the Representation Theorem for RM algebras.
Keywords: RM algebra, deductive system
@article{DMGAA_2020_40_1_a7,
     author = {Dymek, Grzegorz},
     title = {Selected {Properties} of {Some} {Generalizations} of {BCK} {Algebras}},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {89--103},
     publisher = {mathdoc},
     volume = {40},
     number = {1},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2020_40_1_a7/}
}
TY  - JOUR
AU  - Dymek, Grzegorz
TI  - Selected Properties of Some Generalizations of BCK Algebras
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2020
SP  - 89
EP  - 103
VL  - 40
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2020_40_1_a7/
LA  - en
ID  - DMGAA_2020_40_1_a7
ER  - 
%0 Journal Article
%A Dymek, Grzegorz
%T Selected Properties of Some Generalizations of BCK Algebras
%J Discussiones Mathematicae. General Algebra and Applications
%D 2020
%P 89-103
%V 40
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2020_40_1_a7/
%G en
%F DMGAA_2020_40_1_a7
Dymek, Grzegorz. Selected Properties of Some Generalizations of BCK Algebras. Discussiones Mathematicae. General Algebra and Applications, Tome 40 (2020) no. 1, pp. 89-103. http://geodesic.mathdoc.fr/item/DMGAA_2020_40_1_a7/

[1] Q.P. Hu and X. Li, On BCH-algebras, Math. Seminar Notes 11 (1983) 313–320.

[2] Y. Imai and K. Iséki, On axiom systems of propositional calculi XIV, Proc. Japan Acad. 42 (1966) 19–22. doi:10.3792/pja/1195522169

[3] A. Iorgulescu, New generalizations of BCI, BCK and Hilbert algebras – Part I, J. Multiple-Valued Logic and Soft Comp. 27 (2016) 353–406.

[4] A. Iorgulescu, New generalizations of BCI, BCK and Hilbert algebras – Part II, J. Mult.-Valued Logic Soft Comput. 27 (2016) 407–456.

[5] K. Iséki, An algebra related with a propositional calculus, Proc. Japan Acad. 42 (1966) 26–29. doi:10.3792/pja/1195522171

[6] B.L. Meng, CI-algebras, Sci. Math. Japon. e-2009, 695–701.

[7] B.L. Meng, Closed filters in CI-algebras, Sci. Math. Japon. 71 (2010) 201–207.

[8] D.J. Meng, BCI-algebras and abelian groups, Math. Japon. 32 (1987) 693–696.

[9] A. Walendziak, Deductive systems and congruences in RM algebras, J. Mult.-Valued Logic Soft Comput. 30 (2018) 521–539.

[10] R. Ye, Selected paper on BCI/BCK-algebras and Computer Logics (Shaghai Jiaotong University Press, 1991) 25–27.