Strongly Generalized Radical Supplemented Modules
Discussiones Mathematicae. General Algebra and Applications, Tome 40 (2020) no. 1, pp. 63-74

Voir la notice de l'article provenant de la source Library of Science

We introduce and study strongly generalized radical-supplemented modules (or briefly sgrs-modules). With the notation Rad_g(R) := ∩{K : K ≤ R_R, K is both essential and maximal, we prove that (under some mild conditions on a ring R) every right R-module is a sgrs-module if and only if R/Soc(R) is right perfect and the idempotents lift module Rad_g(R).
Keywords: essential submodules, supplemented modules, strongly radical-supplemented modules, (semi-) perfect rings
@article{DMGAA_2020_40_1_a5,
     author = {Das, Soumitra and Buhphang, Ardeline M.},
     title = {Strongly {Generalized} {Radical} {Supplemented} {Modules}},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {63--74},
     publisher = {mathdoc},
     volume = {40},
     number = {1},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2020_40_1_a5/}
}
TY  - JOUR
AU  - Das, Soumitra
AU  - Buhphang, Ardeline M.
TI  - Strongly Generalized Radical Supplemented Modules
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2020
SP  - 63
EP  - 74
VL  - 40
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2020_40_1_a5/
LA  - en
ID  - DMGAA_2020_40_1_a5
ER  - 
%0 Journal Article
%A Das, Soumitra
%A Buhphang, Ardeline M.
%T Strongly Generalized Radical Supplemented Modules
%J Discussiones Mathematicae. General Algebra and Applications
%D 2020
%P 63-74
%V 40
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2020_40_1_a5/
%G en
%F DMGAA_2020_40_1_a5
Das, Soumitra; Buhphang, Ardeline M. Strongly Generalized Radical Supplemented Modules. Discussiones Mathematicae. General Algebra and Applications, Tome 40 (2020) no. 1, pp. 63-74. http://geodesic.mathdoc.fr/item/DMGAA_2020_40_1_a5/