Strongly Generalized Radical Supplemented Modules
Discussiones Mathematicae. General Algebra and Applications, Tome 40 (2020) no. 1, pp. 63-74.

Voir la notice de l'article provenant de la source Library of Science

We introduce and study strongly generalized radical-supplemented modules (or briefly sgrs-modules). With the notation Rad_g(R) := ∩{K : K ≤ R_R, K is both essential and maximal, we prove that (under some mild conditions on a ring R) every right R-module is a sgrs-module if and only if R/Soc(R) is right perfect and the idempotents lift module Rad_g(R).
Keywords: essential submodules, supplemented modules, strongly radical-supplemented modules, (semi-) perfect rings
@article{DMGAA_2020_40_1_a5,
     author = {Das, Soumitra and Buhphang, Ardeline M.},
     title = {Strongly {Generalized} {Radical} {Supplemented} {Modules}},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {63--74},
     publisher = {mathdoc},
     volume = {40},
     number = {1},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2020_40_1_a5/}
}
TY  - JOUR
AU  - Das, Soumitra
AU  - Buhphang, Ardeline M.
TI  - Strongly Generalized Radical Supplemented Modules
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2020
SP  - 63
EP  - 74
VL  - 40
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2020_40_1_a5/
LA  - en
ID  - DMGAA_2020_40_1_a5
ER  - 
%0 Journal Article
%A Das, Soumitra
%A Buhphang, Ardeline M.
%T Strongly Generalized Radical Supplemented Modules
%J Discussiones Mathematicae. General Algebra and Applications
%D 2020
%P 63-74
%V 40
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2020_40_1_a5/
%G en
%F DMGAA_2020_40_1_a5
Das, Soumitra; Buhphang, Ardeline M. Strongly Generalized Radical Supplemented Modules. Discussiones Mathematicae. General Algebra and Applications, Tome 40 (2020) no. 1, pp. 63-74. http://geodesic.mathdoc.fr/item/DMGAA_2020_40_1_a5/

[1] F.W. Anderson and K.R. Fuller, Rings and Categories of Modules (New York, Springer-Verlag, 1974).

[2] E. Büyükaşik and E. Türkmen, Strongly radical supplemented modules, Ukrainian Math. J. 63 (2011) 1306–1313. doi:10.1007/s11253-012-0579-3

[3] J. Clark, C. Lomp, N. Vanaja and R. Wisbauer, Lifting Modules: Supplements and Projectivity in Module Theory (Basel, Boston, Berlin, Birkhauser Verlag, 2006). doi:10.1007/3-7643-7573-6

[4] B. Koşar, C. Nebiyev and A. Pekin, A generalization of g-supplemented modules, Miskolc Math. Notes 20 (2019) 345–352. doi:10.18514/MMN.2019.2586

[5] B. Koşar, C. Nebiyev and N. Sökmez, G-supplemented modules, Ukrainian Math. J. 67 (2015) 861–864. doi:10.1007/s11253-015-1127-8

[6] M.T. Koşan, δ -lifting and δ -supplemented modules, Algebra Colloq. 14 (2007) 53–60. doi:10.1142/S1005386707000065

[7] C. Lomp, On semilocal modules and rings, Comm. Algebra 27 (1999) 1921–1935. doi:10.1080/00927879908826539

[8] C. Nebiyev and H. Hüseyin Ökten, Weakly G-supplemented modules, European J. Pure Appl. Math. 10 (2017) 521–528. https://ejpam.com/index.php/ejpam/article/viewFile/2662/534

[9] T.C. Quynh and P.H. Tin, Some properties of e-supplemented and e-lifting modules, Vietnam J. Math. 41 (2013) 303–312. doi:10.1007/s10013-013-0022-6

[10] L.V. Thuyet and P.H. Tin, Some characterizations of modules via essentially small sub-modules, Kyungpook Math. J. 56 (2016) 1069–1083. doi:10.5666/kmj.2016.56.4.1069

[11] B.N. Türkmen and E. Türkmen, On a generalization of weakly supplemented modules, An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.) 63 (2017) 441–448. doi:10.1515/aicu-2015-0012

[12] R. Wisbauer, Foundations of Module and Ring Theory (Gordon and Breach, Philadelphia, 1991).

[13] Y. Zhou, Generalizations of perfect, semiperfect, and semiregular rings, Algebra Colloq. 7 (2000) 305–318. doi:10.1007/s10011-000-0305-9

[14] D.X. Zhou and X.R. Zhang, Small-essential submodules and morita duality, Southeast Asian Bull. Math. 35 (2011) 1051–1062. http://www.seams-bull-math.ynu.edu.cn/archive.jsp

[15] H. Zöschinger, Komplementierte modulnüber dedekindringen, J. Algebra 29 (1974) 42–56. doi:10.1016/0021-8693(74)90109-4