On Generalized Derivations and Commutativity of Associative Rings
Discussiones Mathematicae. General Algebra and Applications, Tome 40 (2020) no. 1, pp. 49-62

Voir la notice de l'article provenant de la source Library of Science

Let ℛ be a ring with center Z(ℛ). A mapping f : ℛ→ℛ is said to be strong commutativity preserving (SCP) on ℛ if [f (x), f (y)] = [x, y] and is said to be strong anti-commutativity preserving (SACP) on ℛ if f (x) ∘ f (y) = x ∘ y for all x, y ∈ℛ. In the present paper, we apply the standard theory of differential identities to characterize SCP and SACP derivations of prime and semiprime rings.
Keywords: generalized derivations, (semi)prime rings, generalized polynomial identities, Martindale ring of quotients
@article{DMGAA_2020_40_1_a4,
     author = {Sandhu, Gurninder S. and Kumar, Deepak and Davvaz, Bijan},
     title = {On {Generalized} {Derivations} and {Commutativity} of {Associative} {Rings}},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {49--62},
     publisher = {mathdoc},
     volume = {40},
     number = {1},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2020_40_1_a4/}
}
TY  - JOUR
AU  - Sandhu, Gurninder S.
AU  - Kumar, Deepak
AU  - Davvaz, Bijan
TI  - On Generalized Derivations and Commutativity of Associative Rings
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2020
SP  - 49
EP  - 62
VL  - 40
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2020_40_1_a4/
LA  - en
ID  - DMGAA_2020_40_1_a4
ER  - 
%0 Journal Article
%A Sandhu, Gurninder S.
%A Kumar, Deepak
%A Davvaz, Bijan
%T On Generalized Derivations and Commutativity of Associative Rings
%J Discussiones Mathematicae. General Algebra and Applications
%D 2020
%P 49-62
%V 40
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2020_40_1_a4/
%G en
%F DMGAA_2020_40_1_a4
Sandhu, Gurninder S.; Kumar, Deepak; Davvaz, Bijan. On Generalized Derivations and Commutativity of Associative Rings. Discussiones Mathematicae. General Algebra and Applications, Tome 40 (2020) no. 1, pp. 49-62. http://geodesic.mathdoc.fr/item/DMGAA_2020_40_1_a4/