Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2020_40_1_a3, author = {Dutta, Utkal Keshari and Ray, Prasanta Kumar}, title = {Analytic {Properties} of the {Apostol-Vu} {Multiple} {Fibonacci} {Zeta} {Functions}}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {37--48}, publisher = {mathdoc}, volume = {40}, number = {1}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2020_40_1_a3/} }
TY - JOUR AU - Dutta, Utkal Keshari AU - Ray, Prasanta Kumar TI - Analytic Properties of the Apostol-Vu Multiple Fibonacci Zeta Functions JO - Discussiones Mathematicae. General Algebra and Applications PY - 2020 SP - 37 EP - 48 VL - 40 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2020_40_1_a3/ LA - en ID - DMGAA_2020_40_1_a3 ER -
%0 Journal Article %A Dutta, Utkal Keshari %A Ray, Prasanta Kumar %T Analytic Properties of the Apostol-Vu Multiple Fibonacci Zeta Functions %J Discussiones Mathematicae. General Algebra and Applications %D 2020 %P 37-48 %V 40 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGAA_2020_40_1_a3/ %G en %F DMGAA_2020_40_1_a3
Dutta, Utkal Keshari; Ray, Prasanta Kumar. Analytic Properties of the Apostol-Vu Multiple Fibonacci Zeta Functions. Discussiones Mathematicae. General Algebra and Applications, Tome 40 (2020) no. 1, pp. 37-48. http://geodesic.mathdoc.fr/item/DMGAA_2020_40_1_a3/
[1] T.M. Apostol and T.H. Vu, Dirichlet series related to Riemann zeta function, J. Number Theory 19 (1984) 85–102. doi:10.1016/0022-314x(84)90094-5
[2] D. Behera, U.K. Dutta and P.K. Ray, On Lucas-balancing zeta function, Acta Comment. Univ. Tartu. Math. 22 (2018) 65–74. doi:10.12697/ACUTM.2018.22.07
[3] K. Matsumoto, On the analytic continuation of various multiple zeta-functions, in “Number Theory for the Millennium II, Proc. of the Millennial Conference on Number Theory” M.A. Bennett et al. (eds.), A K Peters, 2002, pp. 417–440.
[4] K. Matsumoto, On Mordell-Tornheim and other multiple zeta functions, Proceedings of the Session in Analytic Number Theory and Diophantine Equations, Bonner Math. Schriften, Vol. 360 (Univ. Bonn, 2003) 17pp.
[5] N.K. Meher and S.S. Rout, Analytic continuation of the multiple Lucas zeta functions, J. Math. Anal. Appl., article in press. doi:10.1016/j.jmaa.2018.08.063
[6] J. Mehta, B. Saha and G.K. Viswanadham, Analytic properties of multiple zeta functions and certain weighted variants, an elementary approach, J. Number Theory 168 (2016) 487–508. doi:10.1016/j.jnt.2016.04.027
[7] L. Navas, Analytic continutation of the Fibonacci Dirichlet series, Fibonacci Quart. 39 (2001) 409–418.
[8] S.S. Rout and N.K. Meher, Analytic continuation of the multiple Fibonacci zeta functions, Proc. Japan Acad. Ser. A Math. Sci. 94 (2018) 64–69. doi:10.3792/pjaa.94.64
[9] S.S. Rout and G.K. Panda, Balancing Dirichlet series and related L-function, Indian J. Pure Appl. Math. 45 (2014) 943–952. doi:10.1007/s13226-014-0097-0
[10] D. Zagier, Values of zeta functions and their applications, First European Congress of Mathematics, Vol. II (Birkhauser, 1994), 210–220. doi:10.1007/978-3-0348-9112-7
[11] J. Zhao, Analytic continuation of multiple zeta functions, Proc. Amer. Math. Soc. 128 (2000) 1275–1283. doi:10.2307/119632