Maximal Bp-Subalgebras of B-Algebras
Discussiones Mathematicae. General Algebra and Applications, Tome 40 (2020) no. 1, pp. 25-36.

Voir la notice de l'article provenant de la source Library of Science

We provide some properties of maximal B_p-subalgebras of B-algebras. In particular, we show that for each prime p, a finite B-algebra has a maximal B_p-subalgebra. We also show that for a finite B-algebra of order p^rm, where (p, m) = 1, any two maximal B_p-subalgebras are conjugate and the number of maximal B_p-subalgebras is kp + 1 for some k ∈ ℤ^+.
Keywords: B-algebras, subalgebras, Bp-subalgebras, maximal Bp-sub-algebras
@article{DMGAA_2020_40_1_a2,
     author = {Bantug, Jenette and Endam, Joemar},
     title = {Maximal {B\protect\textsubscript{p}-Subalgebras} of {B-Algebras}},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {25--36},
     publisher = {mathdoc},
     volume = {40},
     number = {1},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2020_40_1_a2/}
}
TY  - JOUR
AU  - Bantug, Jenette
AU  - Endam, Joemar
TI  - Maximal Bp-Subalgebras of B-Algebras
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2020
SP  - 25
EP  - 36
VL  - 40
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2020_40_1_a2/
LA  - en
ID  - DMGAA_2020_40_1_a2
ER  - 
%0 Journal Article
%A Bantug, Jenette
%A Endam, Joemar
%T Maximal Bp-Subalgebras of B-Algebras
%J Discussiones Mathematicae. General Algebra and Applications
%D 2020
%P 25-36
%V 40
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2020_40_1_a2/
%G en
%F DMGAA_2020_40_1_a2
Bantug, Jenette; Endam, Joemar. Maximal Bp-Subalgebras of B-Algebras. Discussiones Mathematicae. General Algebra and Applications, Tome 40 (2020) no. 1, pp. 25-36. http://geodesic.mathdoc.fr/item/DMGAA_2020_40_1_a2/

[1] P.J. Allen, J. Neggers and H.S. Kim, B-algebras and groups, Sci. Math. Jpn. 9 (2003) 159–165.

[2] R. Ameri, A. Borumand Saied, S.A. Nematolah Zadeh, A. Radfar and R.A. Borzooei, On finite B-algebra, Afr. Mat. 26 (2015) 825–847. doi:10.1007/s13370-014-0249-8

[3] J.S. Bantug and J.C. Endam, Lagrange’s Theorem for B-algebras, Int. J. Algebra 11 (2017) 15–23. doi:10.12988/ija.2017.616

[4] J.R. Cho and H.S. Kim, On B-algebras and quasigroups, Quasigroups and Related Systems 8 (2001) 1–6.

[5] J.C. Endam and J.P. Vilela, The Second Isomorphism Theorem for B-algebras, Appl. Math. Sci. 8 (2014) 1865–1872. doi:10.12988/ams.2014.4291

[6] J.C. Endam, Centralizer and Normalizer of B-algebras, Sci. Math. Jpn. 81 (2018) 17–23.

[7] J.C. Endam and E.C. Banagua, B-algebras Acting on Sets, Sci. Math. Jpn. 2 (Online-2018) 2018.

[8] J.C. Endam and R.C. Teves, Some Properties of Cyclic B-algebras, Int. Math. Forum. 11 (2016) 387–394. doi:10.12988/imf.2016.6111

[9] J.C. Endam and J.S. Bantug, Cauchy’s Theorem for B-algebras, Sci. Math. Jpn. 21 (Online-2017) 2017.

[10] N.C. Gonzaga and J.P. Vilela, On Cyclic B-algebras, Appl. Math. Sci. 9 (2015) 5507–5522. doi:10.12988/ams.2015.54299

[11] H.S. Kim and H.G. Park, On 0-commutative B-algebras, Sci. Math. Jpn. (2005) 31–36.

[12] J. Neggers and H.S. Kim, On B-algebras, Mat. Vesnik 54 (2002) 21–29.

[13] J. Neggers and H.S. Kim, A fundamental theorem of B-homomorphism for B-algebras, Int. Math. J. 2 (2002) 207–214.

[14] R. Soleimani, A note on automorphisms of finite B-algebras, Afr. Mat. 29 (2018) 263–275. doi:10.1007/s13370-017-0540-6

[15] A. Walendziak, Some Axiomatizations of B-algebras, Math. Slovaca 56 (2006) 301–306.

[16] A. Walendziak, A note on normal subalgebras in B-algebras, Sci. Math. Jpn. (2005) 49–53.