Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2020_40_1_a1, author = {Ahmed, Malik Tusif}, title = {SP-Domains are {Almost} {Dedekind} {\textemdash} {A} {Streamlined} {Proof}}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {21--24}, publisher = {mathdoc}, volume = {40}, number = {1}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2020_40_1_a1/} }
TY - JOUR AU - Ahmed, Malik Tusif TI - SP-Domains are Almost Dedekind — A Streamlined Proof JO - Discussiones Mathematicae. General Algebra and Applications PY - 2020 SP - 21 EP - 24 VL - 40 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2020_40_1_a1/ LA - en ID - DMGAA_2020_40_1_a1 ER -
Ahmed, Malik Tusif. SP-Domains are Almost Dedekind — A Streamlined Proof. Discussiones Mathematicae. General Algebra and Applications, Tome 40 (2020) no. 1, pp. 21-24. http://geodesic.mathdoc.fr/item/DMGAA_2020_40_1_a1/
[1] M.T. Ahmed and T. Dumitrescu, SP-rings with zero-divisors, Comm. Algebra 45 (3) (2017) 4435–4443. doi:10.1080/00927872.2016.1267184
[2] R. Gilmer, Multiplicative Ideal Theory, Queen’s papers Pure Appl. Math. 90 (Queen’s University, Kingston, Ontario, 1992).
[3] B. Olberding, Factorization into radical ideals, Arithmetical properties of commutative rings and monoids (S. Chapman, Ed.), Lecture Notes in Pure Appl. Math. 241 (Chapman & Hall, 2005) 363–377. doi:10.1201/9781420028249
[4] N.H. Vaughan, R.W. Yeagy, Factoring ideals into semiprime ideals, Canad. J. Math. XXX (6) (1978) 1313–1318. doi:10.4153/CJM-1978-108-5