SP-Domains are Almost Dedekind — A Streamlined Proof
Discussiones Mathematicae. General Algebra and Applications, Tome 40 (2020) no. 1, pp. 21-24.

Voir la notice de l'article provenant de la source Library of Science

Let D be a domain. By [4], D has “property SP” if every ideal of D is a product of radical ideals. It is natural to consider property SP after studying Dedekind domains, which involve factoring ideals into prime ideals. In their article [4] Vaughan and Yeagy prove that a domain having property SP is an almost Dedekind domain. We give a very short and easy proof of this result.
Keywords: SP-domain, almost Dedekind domain, discrete valuation domain
@article{DMGAA_2020_40_1_a1,
     author = {Ahmed, Malik Tusif},
     title = {SP-Domains are {Almost} {Dedekind} {\textemdash} {A} {Streamlined} {Proof}},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {21--24},
     publisher = {mathdoc},
     volume = {40},
     number = {1},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2020_40_1_a1/}
}
TY  - JOUR
AU  - Ahmed, Malik Tusif
TI  - SP-Domains are Almost Dedekind — A Streamlined Proof
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2020
SP  - 21
EP  - 24
VL  - 40
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2020_40_1_a1/
LA  - en
ID  - DMGAA_2020_40_1_a1
ER  - 
%0 Journal Article
%A Ahmed, Malik Tusif
%T SP-Domains are Almost Dedekind — A Streamlined Proof
%J Discussiones Mathematicae. General Algebra and Applications
%D 2020
%P 21-24
%V 40
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2020_40_1_a1/
%G en
%F DMGAA_2020_40_1_a1
Ahmed, Malik Tusif. SP-Domains are Almost Dedekind — A Streamlined Proof. Discussiones Mathematicae. General Algebra and Applications, Tome 40 (2020) no. 1, pp. 21-24. http://geodesic.mathdoc.fr/item/DMGAA_2020_40_1_a1/

[1] M.T. Ahmed and T. Dumitrescu, SP-rings with zero-divisors, Comm. Algebra 45 (3) (2017) 4435–4443. doi:10.1080/00927872.2016.1267184

[2] R. Gilmer, Multiplicative Ideal Theory, Queen’s papers Pure Appl. Math. 90 (Queen’s University, Kingston, Ontario, 1992).

[3] B. Olberding, Factorization into radical ideals, Arithmetical properties of commutative rings and monoids (S. Chapman, Ed.), Lecture Notes in Pure Appl. Math. 241 (Chapman & Hall, 2005) 363–377. doi:10.1201/9781420028249

[4] N.H. Vaughan, R.W. Yeagy, Factoring ideals into semiprime ideals, Canad. J. Math. XXX (6) (1978) 1313–1318. doi:10.4153/CJM-1978-108-5