Yet Two Additional Large Numbers of Subuniverses of Finite Lattices
Discussiones Mathematicae. General Algebra and Applications, Tome 39 (2019) no. 2, pp. 251-261.

Voir la notice de l'article provenant de la source Library of Science

By a subuniverse, we mean a sublattice or the emptyset. We prove that the fourth largest number of subuniverses of an n-element lattice is 43 · 2n−6 for n ≥ 6, and the fifth largest number of subuniverses of an n-element lattice is 85 · 2n−7 for n ≥ 7. Also, we describe the n-element lattices with exactly 43 · 2n−6 (for n ≥ 6) and 85 · 2n−7 (for n ≥ 7) subuniverses.
Keywords: finite lattice, sublattice, number of sublattices, subuniverse
@article{DMGAA_2019_39_2_a6,
     author = {Ahmed, Delbrin and Horv\'ath, Eszter K.},
     title = {Yet {Two} {Additional} {Large} {Numbers} of {Subuniverses} of {Finite} {Lattices}},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {251--261},
     publisher = {mathdoc},
     volume = {39},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2019_39_2_a6/}
}
TY  - JOUR
AU  - Ahmed, Delbrin
AU  - Horváth, Eszter K.
TI  - Yet Two Additional Large Numbers of Subuniverses of Finite Lattices
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2019
SP  - 251
EP  - 261
VL  - 39
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2019_39_2_a6/
LA  - en
ID  - DMGAA_2019_39_2_a6
ER  - 
%0 Journal Article
%A Ahmed, Delbrin
%A Horváth, Eszter K.
%T Yet Two Additional Large Numbers of Subuniverses of Finite Lattices
%J Discussiones Mathematicae. General Algebra and Applications
%D 2019
%P 251-261
%V 39
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2019_39_2_a6/
%G en
%F DMGAA_2019_39_2_a6
Ahmed, Delbrin; Horváth, Eszter K. Yet Two Additional Large Numbers of Subuniverses of Finite Lattices. Discussiones Mathematicae. General Algebra and Applications, Tome 39 (2019) no. 2, pp. 251-261. http://geodesic.mathdoc.fr/item/DMGAA_2019_39_2_a6/

[1] G. Czédli, A note on finite lattices with many congruences, Acta Universitatis Matthiae Belii, Series Mathematics Online (2018) 22–28. http://actamath.savbb.sk/pdf/oacta2018003.pdf

[2] G. Czédli, Lattices with many congruences are planar, Algebra Universalis (2019) 80:16. doi:10.1007/s00012-019-0589-1

[3] G. Czédli, Eighty-three sublattices and planarity. http://arxiv.org/abs/1807.08384

[4] G. Czédli, Finite semilattices with many congruences, (Order). doi:10.1007/s11083-018-9464-5

[5] G. Czédli and E.K. Horváth, A note on lattices with many sublattices. https://arxiv.org/abs/1812.11512

[6] G. Grätzer, Lattice Theory: Foundation (Birkhäuser Verlag, Basel, 2011). doi:10.1007/978-3-0348-0018-1

[7] I. Rival and R. Wille, Lattices freely generated by partially ordered sets: which can be “drawn” ?, J. Reine Angew. Math. 310 (1979) 56–80. doi:10.1515/crll.1979.310.56