Yet Two Additional Large Numbers of Subuniverses of Finite Lattices
Discussiones Mathematicae. General Algebra and Applications, Tome 39 (2019) no. 2, pp. 251-261
Voir la notice de l'article provenant de la source Library of Science
By a subuniverse, we mean a sublattice or the emptyset. We prove that the fourth largest number of subuniverses of an n-element lattice is 43 · 2n−6 for n ≥ 6, and the fifth largest number of subuniverses of an n-element lattice is 85 · 2n−7 for n ≥ 7. Also, we describe the n-element lattices with exactly 43 · 2n−6 (for n ≥ 6) and 85 · 2n−7 (for n ≥ 7) subuniverses.
Keywords:
finite lattice, sublattice, number of sublattices, subuniverse
@article{DMGAA_2019_39_2_a6,
author = {Ahmed, Delbrin and Horv\'ath, Eszter K.},
title = {Yet {Two} {Additional} {Large} {Numbers} of {Subuniverses} of {Finite} {Lattices}},
journal = {Discussiones Mathematicae. General Algebra and Applications},
pages = {251--261},
publisher = {mathdoc},
volume = {39},
number = {2},
year = {2019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGAA_2019_39_2_a6/}
}
TY - JOUR AU - Ahmed, Delbrin AU - Horváth, Eszter K. TI - Yet Two Additional Large Numbers of Subuniverses of Finite Lattices JO - Discussiones Mathematicae. General Algebra and Applications PY - 2019 SP - 251 EP - 261 VL - 39 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2019_39_2_a6/ LA - en ID - DMGAA_2019_39_2_a6 ER -
%0 Journal Article %A Ahmed, Delbrin %A Horváth, Eszter K. %T Yet Two Additional Large Numbers of Subuniverses of Finite Lattices %J Discussiones Mathematicae. General Algebra and Applications %D 2019 %P 251-261 %V 39 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGAA_2019_39_2_a6/ %G en %F DMGAA_2019_39_2_a6
Ahmed, Delbrin; Horváth, Eszter K. Yet Two Additional Large Numbers of Subuniverses of Finite Lattices. Discussiones Mathematicae. General Algebra and Applications, Tome 39 (2019) no. 2, pp. 251-261. http://geodesic.mathdoc.fr/item/DMGAA_2019_39_2_a6/