Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2019_39_2_a6, author = {Ahmed, Delbrin and Horv\'ath, Eszter K.}, title = {Yet {Two} {Additional} {Large} {Numbers} of {Subuniverses} of {Finite} {Lattices}}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {251--261}, publisher = {mathdoc}, volume = {39}, number = {2}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2019_39_2_a6/} }
TY - JOUR AU - Ahmed, Delbrin AU - Horváth, Eszter K. TI - Yet Two Additional Large Numbers of Subuniverses of Finite Lattices JO - Discussiones Mathematicae. General Algebra and Applications PY - 2019 SP - 251 EP - 261 VL - 39 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2019_39_2_a6/ LA - en ID - DMGAA_2019_39_2_a6 ER -
%0 Journal Article %A Ahmed, Delbrin %A Horváth, Eszter K. %T Yet Two Additional Large Numbers of Subuniverses of Finite Lattices %J Discussiones Mathematicae. General Algebra and Applications %D 2019 %P 251-261 %V 39 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGAA_2019_39_2_a6/ %G en %F DMGAA_2019_39_2_a6
Ahmed, Delbrin; Horváth, Eszter K. Yet Two Additional Large Numbers of Subuniverses of Finite Lattices. Discussiones Mathematicae. General Algebra and Applications, Tome 39 (2019) no. 2, pp. 251-261. http://geodesic.mathdoc.fr/item/DMGAA_2019_39_2_a6/
[1] G. Czédli, A note on finite lattices with many congruences, Acta Universitatis Matthiae Belii, Series Mathematics Online (2018) 22–28. http://actamath.savbb.sk/pdf/oacta2018003.pdf
[2] G. Czédli, Lattices with many congruences are planar, Algebra Universalis (2019) 80:16. doi:10.1007/s00012-019-0589-1
[3] G. Czédli, Eighty-three sublattices and planarity. http://arxiv.org/abs/1807.08384
[4] G. Czédli, Finite semilattices with many congruences, (Order). doi:10.1007/s11083-018-9464-5
[5] G. Czédli and E.K. Horváth, A note on lattices with many sublattices. https://arxiv.org/abs/1812.11512
[6] G. Grätzer, Lattice Theory: Foundation (Birkhäuser Verlag, Basel, 2011). doi:10.1007/978-3-0348-0018-1
[7] I. Rival and R. Wille, Lattices freely generated by partially ordered sets: which can be “drawn” ?, J. Reine Angew. Math. 310 (1979) 56–80. doi:10.1515/crll.1979.310.56