Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2019_39_2_a0, author = {Amiri, Azita and Saeedi, Farshid and Alemi, Mohammad Reza}, title = {On {Equality} of {Certain} {Derivations} of {Lie} {Algebras}}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {153--164}, publisher = {mathdoc}, volume = {39}, number = {2}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2019_39_2_a0/} }
TY - JOUR AU - Amiri, Azita AU - Saeedi, Farshid AU - Alemi, Mohammad Reza TI - On Equality of Certain Derivations of Lie Algebras JO - Discussiones Mathematicae. General Algebra and Applications PY - 2019 SP - 153 EP - 164 VL - 39 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2019_39_2_a0/ LA - en ID - DMGAA_2019_39_2_a0 ER -
%0 Journal Article %A Amiri, Azita %A Saeedi, Farshid %A Alemi, Mohammad Reza %T On Equality of Certain Derivations of Lie Algebras %J Discussiones Mathematicae. General Algebra and Applications %D 2019 %P 153-164 %V 39 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGAA_2019_39_2_a0/ %G en %F DMGAA_2019_39_2_a0
Amiri, Azita; Saeedi, Farshid; Alemi, Mohammad Reza. On Equality of Certain Derivations of Lie Algebras. Discussiones Mathematicae. General Algebra and Applications, Tome 39 (2019) no. 2, pp. 153-164. http://geodesic.mathdoc.fr/item/DMGAA_2019_39_2_a0/
[1] H.E. Bell and W.S. Martindale, Centralizing mappings of semiprime rings, Canad. Math. Bull 30 (1987) 92–101. doi:10.1016/j.laa.2011.06.037
[2] S. Cicalo, W.A. de Graaf and C. Schneider, Six-dimensional nilpotent Lie algebras, Linear Algebra Appl. 436 (2012) 163–189. doi:10.1007/BF02638378
[3] M. Deaconescu, G. Silberberg and G.L. Walls, On commuting automorphisms of groups, Arch. Math. (Basel) 79 (2002) 423–429. doi:10.1006/jabr.2000.8655
[4] M. Deaconescu and G.L. Walls, Right 2 -Engel elements and commuting automorphisms of groups, J. Algebra 238 (2001) 479–484. doi:10.1006/jabr.2000.8655
[5] N. Divinsky, On commuting automorphisms of rings, Trans. Roy. Soc. Canada. Sect. III 49 (1955) 19–22. doi:10.12691/jmsa-2-3-1
[6] S. Fouladi and R. Orfi, Commuting automorphisms of some finite groups, Glas. Mat. Ser. III 48 (2013) 91–96. doi:10.3336/gm.48.1.08
[7] W.A. de Graaf, Classification of 6 -dimensional nilpotent Lie algebras over fields of characteristic not 2, J. Algebra 309 (2007) 640–653. doi:10.1016/j.jalgebra.2006.08.006
[8] I.N. Herstein, Problem proposal, Amer. Math. Monthly 91 (1984), 203.
[9] I.N. Herstein, T.J. La ey and J. Thomas, Problems and solutions: solutions of elementary problems E3039, Amer. Math. Monthly 93 (1986) 816–817. doi:10.2307/2322945
[10] J. Luh, A note on commuting automorphisms of rings, Amer. Math. Monthly 77 (1970) 61–62. doi:10.1080/00029890.1970.11992420
[11] E.I. Marshall, The Frattini subalgebra of a Lie algebra, J. London Math. Soc. 42 (1967) 41–422. doi:10.1112/jlms/s1-42.1.416
[12] M. Pettet, Personal communication.
[13] F. Saeedi and S. Sheikh-Mohseni, A characterization of stem algebras in terms of central derivations, Algebr. Represent. Theory 20 (2017) 1143–1150. doi:10.1007/s10468-017-9680-5
[14] S. Sheikh-Mohseni, F. Saeedi and M. Badrkhani Asl, On special subalgebras of derivations of Lie algebras, Asian-Eur. J. Math. 8 (2015), 1550032. doi:10.1142/S1793557115500321
[15] S. Tôgô, Derivations of Lie algebras, J. Sci. Hiroshima Univ. Ser. A, Series A-I 28 (1964) 133–158. doi:10.32917/hmj/1206139393
[16] F. Vosooghpour, Z. Kargarian and M. Akhavan-Malayeri, Commuting automorphism of p-groups with cyclic maximal subgroups, Commun. Korean Math. Soc. 28 (2013) 643–647. doi:10.1142/S0219498819502086