All Linear-Solid Varieties of Semirings
Discussiones Mathematicae. General Algebra and Applications, Tome 39 (2019) no. 1, pp. 101-112

Voir la notice de l'article provenant de la source Library of Science

A variety of semirings is said to be solid if each of its identities is satisfied as hyperidentity. There are precisely four solid varieties of semirings. Each of them contains every derived algebra, where the both fundamental operations are replaced by arbitrary binary term operations. If a variety contains all linear derived algebras, where the fundamental operations are replaced by term operations induced by linear terms, it is called linear-solid. We prove that a variety of semirings is solid if and only if it is linear-solid.
Keywords: variety of semirings, hyperidentity, linear hypersubstitution, solid variety, linear-solid variety
@article{DMGAA_2019_39_1_a7,
     author = {Hounnon, Hippolyte and Denecke, Klaus},
     title = {All {Linear-Solid} {Varieties} of {Semirings}},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {101--112},
     publisher = {mathdoc},
     volume = {39},
     number = {1},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2019_39_1_a7/}
}
TY  - JOUR
AU  - Hounnon, Hippolyte
AU  - Denecke, Klaus
TI  - All Linear-Solid Varieties of Semirings
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2019
SP  - 101
EP  - 112
VL  - 39
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2019_39_1_a7/
LA  - en
ID  - DMGAA_2019_39_1_a7
ER  - 
%0 Journal Article
%A Hounnon, Hippolyte
%A Denecke, Klaus
%T All Linear-Solid Varieties of Semirings
%J Discussiones Mathematicae. General Algebra and Applications
%D 2019
%P 101-112
%V 39
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2019_39_1_a7/
%G en
%F DMGAA_2019_39_1_a7
Hounnon, Hippolyte; Denecke, Klaus. All Linear-Solid Varieties of Semirings. Discussiones Mathematicae. General Algebra and Applications, Tome 39 (2019) no. 1, pp. 101-112. http://geodesic.mathdoc.fr/item/DMGAA_2019_39_1_a7/