Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2019_39_1_a7, author = {Hounnon, Hippolyte and Denecke, Klaus}, title = {All {Linear-Solid} {Varieties} of {Semirings}}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {101--112}, publisher = {mathdoc}, volume = {39}, number = {1}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2019_39_1_a7/} }
TY - JOUR AU - Hounnon, Hippolyte AU - Denecke, Klaus TI - All Linear-Solid Varieties of Semirings JO - Discussiones Mathematicae. General Algebra and Applications PY - 2019 SP - 101 EP - 112 VL - 39 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2019_39_1_a7/ LA - en ID - DMGAA_2019_39_1_a7 ER -
Hounnon, Hippolyte; Denecke, Klaus. All Linear-Solid Varieties of Semirings. Discussiones Mathematicae. General Algebra and Applications, Tome 39 (2019) no. 1, pp. 101-112. http://geodesic.mathdoc.fr/item/DMGAA_2019_39_1_a7/
[1] Th. Changphas, K. Denecke and B. Pibaljommee, Linear Terms and Linear Hyper-substitutions, preprint (KhonKaen, 2014).
[2] K. Denecke and H. Hounnon, Solid Varieties of Semirings, in: Proceedings of the International Conference on Semigroups (Braga, Portugal, 1999), World Scientific (2000) 69–86. doi:10.1142/9789812792310-006
[3] K. Denecke and H. Hounnon, All solid varieties of semirings, J. Algebra 248 (2002) 107–117. doi:10.1006/jabr.2002.9023
[4] K. Denecke and H. Hounnon, All pre-solid varieties of semirings, Demonstratio Math. XXXVII (2004) 13–34. doi:10.1515/dema-2004-0104
[5] K. Denecke and S.L. Wismath, Hyperidentities and Clones (Gordon and Breach Science Publishers, 2000). doi:10.1201/9781482287516
[6] K. Denecke and S.L. Wismath, Universal Algebra and Applications in Theoretical Computer Science (Chapman & Hall/CRC, 2002). doi:10.1201/9781482285833
[7] E. Graczyńska, On normal and regular identities and hyperidentities, in: Proceedings of the V. Universal Algebra Symposium, Universal and Applied Algebra (Turawa, Poland, Word Scientific, 1989), 107–135. doi:10.1007/BF01190718
[8] E. Graczyńska and D. Schweigert, Hypervarieties of a given type, Algebra Univ. 27 (1990) 305–318. doi:10.1007/BF01190711
[9] U. Hebisch and H.J. Weinert, Semirings – Algebraic Theory and Applications in Computer Science, World Scientific (Singapore-New Jersey-London-HongKong, 1993).
[10] H. Hounnon, Hyperidentities in Semirings and Applications (Shaker Verlag, 2002).
[11] J. Koppitz and K. Denecke, M-solid Varieties of Algebras, Advances in Mathematics (Springer Science + Business Media, Inc., 2006). doi:10.1007/0-387-30806-7
[12] F. Pastijn, Idempotent distributive semirings II, Semigroup Forum 26 (1983) 151–161. doi:10.1007/BF02572828
[13] R. McKenzie, G. McNulty and W.F. Taylor, Algebras, Lattices Varieties, Vol. 1 (Inc. Belmonts Califormia, 1987).