Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2019_39_1_a1, author = {Chajda, Ivan and L\"anger, Helmut}, title = {Residuated {Structures} {Derived} from {Commutative} {Idempotent} {Semirings}}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {23--33}, publisher = {mathdoc}, volume = {39}, number = {1}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2019_39_1_a1/} }
TY - JOUR AU - Chajda, Ivan AU - Länger, Helmut TI - Residuated Structures Derived from Commutative Idempotent Semirings JO - Discussiones Mathematicae. General Algebra and Applications PY - 2019 SP - 23 EP - 33 VL - 39 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2019_39_1_a1/ LA - en ID - DMGAA_2019_39_1_a1 ER -
%0 Journal Article %A Chajda, Ivan %A Länger, Helmut %T Residuated Structures Derived from Commutative Idempotent Semirings %J Discussiones Mathematicae. General Algebra and Applications %D 2019 %P 23-33 %V 39 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGAA_2019_39_1_a1/ %G en %F DMGAA_2019_39_1_a1
Chajda, Ivan; Länger, Helmut. Residuated Structures Derived from Commutative Idempotent Semirings. Discussiones Mathematicae. General Algebra and Applications, Tome 39 (2019) no. 1, pp. 23-33. http://geodesic.mathdoc.fr/item/DMGAA_2019_39_1_a1/
[1] L.P. Belluce, A. Di Nola and A.R. Ferraioli, MV-semirings and their sheaf representations, Order 30 (2013) 165–179. doi:10.1007/s11083-011-9234-0
[2] R. Bělohlavek, Fuzzy Relational Systems, Foundations and Principles (Kluwer, New York, 2002). ISBN 0-306-46777-1/hbk.
[3] G. Birkhoff, Lattice Theory, AMS (Providence, R.I., 1979). ISBN 0-8218-1025-1.
[4] I. Chajda, A representation of residuated lattices satisfying the double negation law, Soft Computing 22 (2018) 1773–1776. doi:10.1007/s00500-017-2673-9.
[5] I. Chajda and H. Länger, When does a semiring become a residuated lattice?, Asian-Eur. J. Math. 9 (2016) 1650088 (10 pages). doi:10.1142/S1793557116500881.
[6] R.P. Dilworth, Non-commutative residuated lattices, Trans. Amer. Math. Soc. 46 (1939) 426–444. doi:10.2307/1989931 https://www.jstor.org/stable/1989931.
[7] N. Galatos, P. Jipsen, T. Kowalski and H. Ono, Residuated Lattices: An Algebraic Glimpse at Substructural Logics (Elsevier, Amsterdam, 2007). ISBN 978-0-444-52141-5.
[8] J.S. Golan, The Theory of Semirings with Applications in Mathematics and Theoretical Computer Science (Longman, Harlow, 1992). ISBN 0-582-07855-5.
[9] P. Jipsen, From semirings to residuated Kleene lattices, Studia Logica 76 (2004) 291–303. doi:10.1023/B:STUD.0000032089.54776.63
[10] J. Pavelka, On fuzzy logic, II Enriched residuated lattices and semantics of propositional calculi, Z. Math. Logik Grundlag. Math. 25 (1979) 119–134. doi:10.1002/malq.19790250706
[11] C. Tsinakis and A.M. Wille, Minimal varieties of involutive residuated lattices, Studia Logica 83 (2006) 407–423. doi:10.1007/s11225-006-8311-7
[12] M. Ward and R.P. Dilworth, Residuated lattices, Trans. Amer. Math. Soc. 45 (1939) 335–354. doi:10.1090/S0002-9947-1939-1501995-3
[13] A.M. Wille, A Gentzen system for involutive residuated lattices, Algebra Universalis 54 (2005) 449–463. doi:10.1007/s00012-005-1957-6