Residuated Structures Derived from Commutative Idempotent Semirings
Discussiones Mathematicae. General Algebra and Applications, Tome 39 (2019) no. 1, pp. 23-33.

Voir la notice de l'article provenant de la source Library of Science

Since the reduct of every residuated lattice is a semiring, we can ask under what condition a semiring can be converted into a residuated lattice. It turns out that this is possible if the semiring in question is commutative, idempotent, G-simple and equipped with an antitone involution. Then the resulting residuated lattice even satisfies the double negation law. Moreover, if the mentioned semiring is finite then it can be converted into a residuated lattice or join-semilattice also without asking an antitone involution on it. To a residuated lattice L which does not satisfy the double negation law there can be assigned a so-called augmented semiring. This can be used for reconstruction of the so-called core C(L) of L. Conditions under which C(L) constitutes a subuniverse of L are provided.
Keywords: semiring, commutative, idempotent, G-simple, antitone involution, commutative residuated lattice, commutative residuated join-semilattice, divisible, prelinear, double negation law
@article{DMGAA_2019_39_1_a1,
     author = {Chajda, Ivan and L\"anger, Helmut},
     title = {Residuated {Structures} {Derived} from {Commutative} {Idempotent} {Semirings}},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {23--33},
     publisher = {mathdoc},
     volume = {39},
     number = {1},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2019_39_1_a1/}
}
TY  - JOUR
AU  - Chajda, Ivan
AU  - Länger, Helmut
TI  - Residuated Structures Derived from Commutative Idempotent Semirings
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2019
SP  - 23
EP  - 33
VL  - 39
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2019_39_1_a1/
LA  - en
ID  - DMGAA_2019_39_1_a1
ER  - 
%0 Journal Article
%A Chajda, Ivan
%A Länger, Helmut
%T Residuated Structures Derived from Commutative Idempotent Semirings
%J Discussiones Mathematicae. General Algebra and Applications
%D 2019
%P 23-33
%V 39
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2019_39_1_a1/
%G en
%F DMGAA_2019_39_1_a1
Chajda, Ivan; Länger, Helmut. Residuated Structures Derived from Commutative Idempotent Semirings. Discussiones Mathematicae. General Algebra and Applications, Tome 39 (2019) no. 1, pp. 23-33. http://geodesic.mathdoc.fr/item/DMGAA_2019_39_1_a1/

[1] L.P. Belluce, A. Di Nola and A.R. Ferraioli, MV-semirings and their sheaf representations, Order 30 (2013) 165–179. doi:10.1007/s11083-011-9234-0

[2] R. Bělohlavek, Fuzzy Relational Systems, Foundations and Principles (Kluwer, New York, 2002). ISBN 0-306-46777-1/hbk.

[3] G. Birkhoff, Lattice Theory, AMS (Providence, R.I., 1979). ISBN 0-8218-1025-1.

[4] I. Chajda, A representation of residuated lattices satisfying the double negation law, Soft Computing 22 (2018) 1773–1776. doi:10.1007/s00500-017-2673-9.

[5] I. Chajda and H. Länger, When does a semiring become a residuated lattice?, Asian-Eur. J. Math. 9 (2016) 1650088 (10 pages). doi:10.1142/S1793557116500881.

[6] R.P. Dilworth, Non-commutative residuated lattices, Trans. Amer. Math. Soc. 46 (1939) 426–444. doi:10.2307/1989931 https://www.jstor.org/stable/1989931.

[7] N. Galatos, P. Jipsen, T. Kowalski and H. Ono, Residuated Lattices: An Algebraic Glimpse at Substructural Logics (Elsevier, Amsterdam, 2007). ISBN 978-0-444-52141-5.

[8] J.S. Golan, The Theory of Semirings with Applications in Mathematics and Theoretical Computer Science (Longman, Harlow, 1992). ISBN 0-582-07855-5.

[9] P. Jipsen, From semirings to residuated Kleene lattices, Studia Logica 76 (2004) 291–303. doi:10.1023/B:STUD.0000032089.54776.63

[10] J. Pavelka, On fuzzy logic, II Enriched residuated lattices and semantics of propositional calculi, Z. Math. Logik Grundlag. Math. 25 (1979) 119–134. doi:10.1002/malq.19790250706

[11] C. Tsinakis and A.M. Wille, Minimal varieties of involutive residuated lattices, Studia Logica 83 (2006) 407–423. doi:10.1007/s11225-006-8311-7

[12] M. Ward and R.P. Dilworth, Residuated lattices, Trans. Amer. Math. Soc. 45 (1939) 335–354. doi:10.1090/S0002-9947-1939-1501995-3

[13] A.M. Wille, A Gentzen system for involutive residuated lattices, Algebra Universalis 54 (2005) 449–463. doi:10.1007/s00012-005-1957-6