Ordered Regular Semigroups with Biggest Associates
Discussiones Mathematicae. General Algebra and Applications, Tome 39 (2019) no. 1, pp. 5-21.

Voir la notice de l'article provenant de la source Library of Science

We investigate the class BA of ordered regular semigroups in which each element has a biggest associate x = max y | xyx = x. This class properly contains the class PO of principally ordered regular semigroups (in which there exists x* = max y | xyx ⩽x) and is properly contained in the class BI of ordered regular semigroups in which each element has a biggest inverse xo. We show that several basic properties of the unary operation x ↦ x* in PO extend to corresponding properties of the unary operation x ↦ x in BA. We consider naturally ordered semigroups in BA and prove that those that are orthodox contain a biggest idempotent. We determine the structure of some such semigroups in terms of a principal left ideal and a principal right ideal. We also characterise the completely simple members of BA. Finally, we consider the naturally ordered semigroups in BA that do not have a biggest idempotent.
Keywords: regular semigroup, biggest associate, principally ordered, naturally ordered
@article{DMGAA_2019_39_1_a0,
     author = {Blyth, T.S. and Almeida Santos, M.H.},
     title = {Ordered {Regular} {Semigroups} with {Biggest} {Associates}},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {5--21},
     publisher = {mathdoc},
     volume = {39},
     number = {1},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2019_39_1_a0/}
}
TY  - JOUR
AU  - Blyth, T.S.
AU  - Almeida Santos, M.H.
TI  - Ordered Regular Semigroups with Biggest Associates
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2019
SP  - 5
EP  - 21
VL  - 39
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2019_39_1_a0/
LA  - en
ID  - DMGAA_2019_39_1_a0
ER  - 
%0 Journal Article
%A Blyth, T.S.
%A Almeida Santos, M.H.
%T Ordered Regular Semigroups with Biggest Associates
%J Discussiones Mathematicae. General Algebra and Applications
%D 2019
%P 5-21
%V 39
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2019_39_1_a0/
%G en
%F DMGAA_2019_39_1_a0
Blyth, T.S.; Almeida Santos, M.H. Ordered Regular Semigroups with Biggest Associates. Discussiones Mathematicae. General Algebra and Applications, Tome 39 (2019) no. 1, pp. 5-21. http://geodesic.mathdoc.fr/item/DMGAA_2019_39_1_a0/

[1] T.S. Blyth, Lattices and Ordered Algebraic Structures (Springer, 2005). doi:10.1007/b139095

[2] T.S. Blyth, On the endomorphism semigroup of an ordered set, Glasgow Math. J. 37 (1995) 173–178. doi:10.1017/S0017089500031074

[3] T.S. Blyth and R. McFadden, Naturally ordered regular semigroups with a greatest idempotent, Proc. Roy. Soc. Edinburgh 91A (1981) 107–122. doi:10.1017/S0308210500012671

[4] T.S. Blyth and G.A. Pinto, Principally ordered regular semigroups, Glasgow Math. J. 32 (1990) 349–364. doi:10.1017/S0017089500009435

[5] T.S. Blyth and M.H. Almeida Santos, On weakly multiplicative inverse transversals, Proc. Edinburgh Math. Soc. 37 (1993) 91–99. doi:10.1017/s001309150001871x

[6] T.S. Blyth and M.H. Almeida Santos, On naturally ordered regular semigroups with biggest idempotents, Communications in Algebra 21 (1993) 1761–1771. doi:10.1080/00927879308824651

[7] T.S. Blyth and M.H. Almeida Santos, E-special ordered regular semigroups, Communications in Algebra 43 (2015) 3294–3313. doi:10.1080/00927872.2014.918987

[8] R. Croisot, Demi-groupes inversifs et demi-groupes réunions de demi-groupes simples, Ann. Sci. École Norm. Sup. 70 (1953) 361–379. doi:10.24033/asens.1015

[9] P.A. Grillet, Semigroups (Marcel Dekker, New York, 1995). doi:10.1201/9780203739938

[10] R.D. Luce, A note on boolean matrix theory, Proc. Amer. Math. Soc. 3 (1952) 382–388. doi:10.2307/2031888

[11] D.B. McAlister, Regular Rees matrix semigroups and regular Dubreil-Jacotin semigroups, J. Australian Math. Soc. 31 (1981) 325–336. doi:10.1017/S1446788700019467

[12] K.S.S. Nambooripad, The natural partial order on a regular semigroup, Proc. Edinburgh Math. Soc. 23 (1980) 249–260. doi:10.1017/S0013091500003801

[13] T. Saito, Naturally ordered regular semigroups with greatest inverses, Proc. Edinburgh Math. Soc. 32 (1989) 33–39. doi:10.1017/S001309150000688x