Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2019_39_1_a0, author = {Blyth, T.S. and Almeida Santos, M.H.}, title = {Ordered {Regular} {Semigroups} with {Biggest} {Associates}}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {5--21}, publisher = {mathdoc}, volume = {39}, number = {1}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2019_39_1_a0/} }
TY - JOUR AU - Blyth, T.S. AU - Almeida Santos, M.H. TI - Ordered Regular Semigroups with Biggest Associates JO - Discussiones Mathematicae. General Algebra and Applications PY - 2019 SP - 5 EP - 21 VL - 39 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2019_39_1_a0/ LA - en ID - DMGAA_2019_39_1_a0 ER -
Blyth, T.S.; Almeida Santos, M.H. Ordered Regular Semigroups with Biggest Associates. Discussiones Mathematicae. General Algebra and Applications, Tome 39 (2019) no. 1, pp. 5-21. http://geodesic.mathdoc.fr/item/DMGAA_2019_39_1_a0/
[1] T.S. Blyth, Lattices and Ordered Algebraic Structures (Springer, 2005). doi:10.1007/b139095
[2] T.S. Blyth, On the endomorphism semigroup of an ordered set, Glasgow Math. J. 37 (1995) 173–178. doi:10.1017/S0017089500031074
[3] T.S. Blyth and R. McFadden, Naturally ordered regular semigroups with a greatest idempotent, Proc. Roy. Soc. Edinburgh 91A (1981) 107–122. doi:10.1017/S0308210500012671
[4] T.S. Blyth and G.A. Pinto, Principally ordered regular semigroups, Glasgow Math. J. 32 (1990) 349–364. doi:10.1017/S0017089500009435
[5] T.S. Blyth and M.H. Almeida Santos, On weakly multiplicative inverse transversals, Proc. Edinburgh Math. Soc. 37 (1993) 91–99. doi:10.1017/s001309150001871x
[6] T.S. Blyth and M.H. Almeida Santos, On naturally ordered regular semigroups with biggest idempotents, Communications in Algebra 21 (1993) 1761–1771. doi:10.1080/00927879308824651
[7] T.S. Blyth and M.H. Almeida Santos, E-special ordered regular semigroups, Communications in Algebra 43 (2015) 3294–3313. doi:10.1080/00927872.2014.918987
[8] R. Croisot, Demi-groupes inversifs et demi-groupes réunions de demi-groupes simples, Ann. Sci. École Norm. Sup. 70 (1953) 361–379. doi:10.24033/asens.1015
[9] P.A. Grillet, Semigroups (Marcel Dekker, New York, 1995). doi:10.1201/9780203739938
[10] R.D. Luce, A note on boolean matrix theory, Proc. Amer. Math. Soc. 3 (1952) 382–388. doi:10.2307/2031888
[11] D.B. McAlister, Regular Rees matrix semigroups and regular Dubreil-Jacotin semigroups, J. Australian Math. Soc. 31 (1981) 325–336. doi:10.1017/S1446788700019467
[12] K.S.S. Nambooripad, The natural partial order on a regular semigroup, Proc. Edinburgh Math. Soc. 23 (1980) 249–260. doi:10.1017/S0013091500003801
[13] T. Saito, Naturally ordered regular semigroups with greatest inverses, Proc. Edinburgh Math. Soc. 32 (1989) 33–39. doi:10.1017/S001309150000688x