Folding Theory of Implicative and Obstinate Ideals in Bl-Algebras
Discussiones Mathematicae. General Algebra and Applications, Tome 38 (2018) no. 2, pp. 255-271.

Voir la notice de l'article provenant de la source Library of Science

In this paper, the concepts of n-fold implicative ideals and n-fold obstinate ideals in BL-algebras are introduced. With respect to this concepts, some related results are given. In particular, it is proved that an ideal is an n-fold implicative ideal if and only if is an n-fold Boolean ideal. Also, it is shown that a BL-algebra is an n-fold integral BL-algebra if and only if trivial ideal 0 is an n-fold obstinate ideal. Moreover, the relation between n-fold obstinate ideals and n-fold (integral) obstinate filters in BL-algebras are studied by using the set of complement elements. Finally, it is proved that ideal I of BL-algebra L is an n-fold obstinate ideal if and only if L/I is an n-fold obstinate BL-algebra.
Keywords: BL-algebra, ideal, n-fold implicative ideal, n-fold obstinate ideal
@article{DMGAA_2018_38_2_a7,
     author = {Paad, Akbar},
     title = {Folding {Theory} of {Implicative} and {Obstinate} {Ideals} in {Bl-Algebras}},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {255--271},
     publisher = {mathdoc},
     volume = {38},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2018_38_2_a7/}
}
TY  - JOUR
AU  - Paad, Akbar
TI  - Folding Theory of Implicative and Obstinate Ideals in Bl-Algebras
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2018
SP  - 255
EP  - 271
VL  - 38
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2018_38_2_a7/
LA  - en
ID  - DMGAA_2018_38_2_a7
ER  - 
%0 Journal Article
%A Paad, Akbar
%T Folding Theory of Implicative and Obstinate Ideals in Bl-Algebras
%J Discussiones Mathematicae. General Algebra and Applications
%D 2018
%P 255-271
%V 38
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2018_38_2_a7/
%G en
%F DMGAA_2018_38_2_a7
Paad, Akbar. Folding Theory of Implicative and Obstinate Ideals in Bl-Algebras. Discussiones Mathematicae. General Algebra and Applications, Tome 38 (2018) no. 2, pp. 255-271. http://geodesic.mathdoc.fr/item/DMGAA_2018_38_2_a7/

[1] C.C. Chang, Algebraic analysis of many valued logics, Trans. Amer. Math. Soc. 88 (1958) 467–490. doi:10.1090/S0002-9947-1958-0094302-9

[2] A. Di Nola, G. Georgescu and A. Iorgulescu, Pseduo BL-algebras Part I, Mult. Val. Logic, 8 (2002) 673–714.

[3] A. Di Nola and L. Leustean, Compact representations of BL-algebras, Department of Computer Science, University Aarhus. BRICS Report Series, (2002).

[4] M. Haveshki and E. Eslami, n-Fold filters in BL-algebras, Math. Log. Quart. 54 (2008) 178–186.

[5] S. Motamed and A.B. Saeid, n-Fold obstinate filters in BL-algebras, Neural. Comput. Applic. 20 (2011) 461–472.

[6] C. Lele and J.B. Nganou, MV-algebras derived from ideals in BL-algebras, Fuzzy Sets and Systems 218 (2013) 103–113.

[7] P. Hájek, Metamathematics of Fuzzy Logic, Trends in Logic 4 (Kluwer Academic Publishers, 1998), ISBN:9781402003707.

[8] A. Paad, Integral ideals and maximal ideals in BL-algebras, An.Univ. Craiova Ser. Mat. Inform. 43 (2016) 231–242.

[9] A. Paad, n-Fold integral ideals and n-fold Boolean ideals in BL-algebras, Afr. Mat. 28 (2017) 971–984.

[10] A. Paad and R.A. Borzooei, Generalization of integral filters in BL-algebras and n-fold integral BL-algebras, Afr. Mat. 26 (2015) 1299–1311.

[11] Y. Yang and X. Xin, On characterization of BL-algebras via implicative ideals, Italian J. Pure and Appl. Math. 37 (2017) 493–506.

[12] E. Turunen, Boolean deductive systems of BL-algebras, Arch.Math. Logic. 40 (2001) 467–473.