Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2018_38_2_a6, author = {Rao, Marapureddy Murali Krishna and Venkateswarlu, B.}, title = {Bi-Interior {Ideals} of {\ensuremath{\Gamma}-Semirings}}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {239--254}, publisher = {mathdoc}, volume = {38}, number = {2}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2018_38_2_a6/} }
TY - JOUR AU - Rao, Marapureddy Murali Krishna AU - Venkateswarlu, B. TI - Bi-Interior Ideals of Γ-Semirings JO - Discussiones Mathematicae. General Algebra and Applications PY - 2018 SP - 239 EP - 254 VL - 38 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2018_38_2_a6/ LA - en ID - DMGAA_2018_38_2_a6 ER -
Rao, Marapureddy Murali Krishna; Venkateswarlu, B. Bi-Interior Ideals of Γ-Semirings. Discussiones Mathematicae. General Algebra and Applications, Tome 38 (2018) no. 2, pp. 239-254. http://geodesic.mathdoc.fr/item/DMGAA_2018_38_2_a6/
[1] R.A. Good and D.R. Hughes, Associated groups for a semigroup, Bull. Amer. Math. Soc. 58 (1952) 624-625.
[2] M. Henriksen, Ideals in semirings with commutative addition, Amer. Math. Soc. Notices 5 (1958) 321.
[3] K. Iseki, Quasi-ideals in semirings without zero, Proc. Japan Acad. 34 (1958) 79–84. doi:10.3792/pja/1195524783
[4] K. Iseki, Ideal theory of semiring, Proc. Japan Acad. 32 (1956) 554-559. doi:10.3792/pja/1195525272
[5] K. Iseki, Ideal in semirings, Proc. Japan Acad. 34 (1958) 29–31. doi:10.3792/pja/1195524845
[6] R.D. Jagatap and Y.S. Pawar, Quasi-ideals and minimal quasi-ideals in Γ-semirings, Novi Sad J. Math. 39 (2009) 79–87. dmi.uns.ac.rs/nsjom/Papers/39-2/NSJOM-39-2-079-087.pdf.
[7] S. Lajos, On the bi-ideals in semigroups, Proc. Japan Acad. 45 (1969) 710–712. doi:10.3792/pja/1195520625
[8] S. Lajos and F.A. Szasz, On the bi-ideals in associative ring, Proc. Japan Acad. 46 (1970) 505–507. doi:10.3792/pja/1195520265
[9] H. Lehmer, A ternary analogue of abelian groups, Amer. J. Math. 59 (1932) 329–338. doi:10.2307/2370997
[10] M. Murali Krishna Rao, Γ-semirings -I, Southeast Asian Bull. Math. 19 (1995) 49–54.
[11] M. Murali Krishna Rao, Ideals in ordered Γ-semirings, Discuss. Math. Gen. Algebra Appl. 38 (2018) 47–68. doi:10.7151/dmgaa.1284
[12] M. Murali Krishna Rao, On Γ-semiring with identity, Discuss. Math. Gen. Algebra Appl. 37 (2017) 189–207. doi:10.7151/dmgaa.1276
[13] M. Murali Krishna Rao, Γ-semirings -II, Southeast Asian Bull. Math. 21 (1997) 281–287.
[14] M. Murali Krishna Rao, The Jacobson radical of Γ-semiring, Southeast Asian Bull. Math. 23 (1999) 127–134.
[15] Marapureddy Murali Krishna Rao, Bi-quasi-ideals and fuzzy bi-quasi ideals of Γ-semigroups, Bull. Int. Math. Virtual Inst. 7 (2017) 231–242. http://oaji.net/articles/2016/1599-1480851272.pdf.
[16] Marapureddy Murali Krishna Rao, Bi-interior ideals of semigroups, Discuss. Math. Gen. Algebra Appl. 38 (2018) 69–78. doi:10.7151/dmgaa.1283
[17] M. Murali Krishna Rao and B. Venkateswarlu, Regular Γ-incline and field Γ-semiring, Novi Sad J. Math. 45 (2015) 155–171. doi:10.30755/NSJOM.2014.058
[18] M. Murali Krishna Rao, B. Venkateswarlu and N. Rafi, Bi-quasi-ideals of Γ-semirings, Asia Pacific J. Math. 4 (2017) 144–153.
[19] M. Murali Krishna Rao, Left bi-quasi ideals of semirings, Bull. Int. Math. Virtual Inst. 8 (2018) 45–53. doi:10.7251/BIMVI1801045R
[20] N. Nobusawa, On a generalization of the ring theory, Osaka. J. Math. 1 (1964) 81–89. ir.library.osaka-u.ac.jp/dspace/bitstream/11094/12354/1/ojm 01-01-08.pdf.
[21] M.K. Sen, On Γ -semigroup, in: Proceedings of International Conference of algebra and its application, Decker Publication (Ed(s)), (New York, 1981) 301–308.
[22] A.M. Shabir and A. Batod, A note on quasi ideal in semirings, Southeast Asian Bull. Math 7 (2004) 923–928.
[23] O. Steinfeld, Uher die quasi ideals, Von halbgruppend Publ. Math. Debrecen 4 (1956) 262–275.
[24] H.S. Vandiver, Note on a simple type of algebra in which cancellation law of addition does not hold, Bull. Amer. Math. Soc. (N.S.) 40 (1934) 914–920. doi:10.1090/s0002-9904-1934-06003-8