Bi-Interior Ideals of Γ-Semirings
Discussiones Mathematicae. General Algebra and Applications, Tome 38 (2018) no. 2, pp. 239-254.

Voir la notice de l'article provenant de la source Library of Science

In this paper, as a further generalization of ideals, we introduce the notion of bi-interior ideal as a generalization of quasi ideal, bi-ideal and interior ideal of Γ-semiring and study the properties of bi-interior ideals of Γ-semiring. We prove that if M is a field Γ-semiring, then M is a bi-interior simple Γ-semiring.
Keywords: quasi ideal, bi-ideal, interior ideal, bi-interior ideal, bi-quasi ideal, regular Γ-semiring, bi-interior simple Γ-semiring
@article{DMGAA_2018_38_2_a6,
     author = {Rao, Marapureddy Murali Krishna and Venkateswarlu, B.},
     title = {Bi-Interior {Ideals} of {\ensuremath{\Gamma}-Semirings}},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {239--254},
     publisher = {mathdoc},
     volume = {38},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2018_38_2_a6/}
}
TY  - JOUR
AU  - Rao, Marapureddy Murali Krishna
AU  - Venkateswarlu, B.
TI  - Bi-Interior Ideals of Γ-Semirings
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2018
SP  - 239
EP  - 254
VL  - 38
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2018_38_2_a6/
LA  - en
ID  - DMGAA_2018_38_2_a6
ER  - 
%0 Journal Article
%A Rao, Marapureddy Murali Krishna
%A Venkateswarlu, B.
%T Bi-Interior Ideals of Γ-Semirings
%J Discussiones Mathematicae. General Algebra and Applications
%D 2018
%P 239-254
%V 38
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2018_38_2_a6/
%G en
%F DMGAA_2018_38_2_a6
Rao, Marapureddy Murali Krishna; Venkateswarlu, B. Bi-Interior Ideals of Γ-Semirings. Discussiones Mathematicae. General Algebra and Applications, Tome 38 (2018) no. 2, pp. 239-254. http://geodesic.mathdoc.fr/item/DMGAA_2018_38_2_a6/

[1] R.A. Good and D.R. Hughes, Associated groups for a semigroup, Bull. Amer. Math. Soc. 58 (1952) 624-625.

[2] M. Henriksen, Ideals in semirings with commutative addition, Amer. Math. Soc. Notices 5 (1958) 321.

[3] K. Iseki, Quasi-ideals in semirings without zero, Proc. Japan Acad. 34 (1958) 79–84. doi:10.3792/pja/1195524783

[4] K. Iseki, Ideal theory of semiring, Proc. Japan Acad. 32 (1956) 554-559. doi:10.3792/pja/1195525272

[5] K. Iseki, Ideal in semirings, Proc. Japan Acad. 34 (1958) 29–31. doi:10.3792/pja/1195524845

[6] R.D. Jagatap and Y.S. Pawar, Quasi-ideals and minimal quasi-ideals in Γ-semirings, Novi Sad J. Math. 39 (2009) 79–87. dmi.uns.ac.rs/nsjom/Papers/39-2/NSJOM-39-2-079-087.pdf.

[7] S. Lajos, On the bi-ideals in semigroups, Proc. Japan Acad. 45 (1969) 710–712. doi:10.3792/pja/1195520625

[8] S. Lajos and F.A. Szasz, On the bi-ideals in associative ring, Proc. Japan Acad. 46 (1970) 505–507. doi:10.3792/pja/1195520265

[9] H. Lehmer, A ternary analogue of abelian groups, Amer. J. Math. 59 (1932) 329–338. doi:10.2307/2370997

[10] M. Murali Krishna Rao, Γ-semirings -I, Southeast Asian Bull. Math. 19 (1995) 49–54.

[11] M. Murali Krishna Rao, Ideals in ordered Γ-semirings, Discuss. Math. Gen. Algebra Appl. 38 (2018) 47–68. doi:10.7151/dmgaa.1284

[12] M. Murali Krishna Rao, On Γ-semiring with identity, Discuss. Math. Gen. Algebra Appl. 37 (2017) 189–207. doi:10.7151/dmgaa.1276

[13] M. Murali Krishna Rao, Γ-semirings -II, Southeast Asian Bull. Math. 21 (1997) 281–287.

[14] M. Murali Krishna Rao, The Jacobson radical of Γ-semiring, Southeast Asian Bull. Math. 23 (1999) 127–134.

[15] Marapureddy Murali Krishna Rao, Bi-quasi-ideals and fuzzy bi-quasi ideals of Γ-semigroups, Bull. Int. Math. Virtual Inst. 7 (2017) 231–242. http://oaji.net/articles/2016/1599-1480851272.pdf.

[16] Marapureddy Murali Krishna Rao, Bi-interior ideals of semigroups, Discuss. Math. Gen. Algebra Appl. 38 (2018) 69–78. doi:10.7151/dmgaa.1283

[17] M. Murali Krishna Rao and B. Venkateswarlu, Regular Γ-incline and field Γ-semiring, Novi Sad J. Math. 45 (2015) 155–171. doi:10.30755/NSJOM.2014.058

[18] M. Murali Krishna Rao, B. Venkateswarlu and N. Rafi, Bi-quasi-ideals of Γ-semirings, Asia Pacific J. Math. 4 (2017) 144–153.

[19] M. Murali Krishna Rao, Left bi-quasi ideals of semirings, Bull. Int. Math. Virtual Inst. 8 (2018) 45–53. doi:10.7251/BIMVI1801045R

[20] N. Nobusawa, On a generalization of the ring theory, Osaka. J. Math. 1 (1964) 81–89. ir.library.osaka-u.ac.jp/dspace/bitstream/11094/12354/1/ojm 01-01-08.pdf.

[21] M.K. Sen, On Γ -semigroup, in: Proceedings of International Conference of algebra and its application, Decker Publication (Ed(s)), (New York, 1981) 301–308.

[22] A.M. Shabir and A. Batod, A note on quasi ideal in semirings, Southeast Asian Bull. Math 7 (2004) 923–928.

[23] O. Steinfeld, Uher die quasi ideals, Von halbgruppend Publ. Math. Debrecen 4 (1956) 262–275.

[24] H.S. Vandiver, Note on a simple type of algebra in which cancellation law of addition does not hold, Bull. Amer. Math. Soc. (N.S.) 40 (1934) 914–920. doi:10.1090/s0002-9904-1934-06003-8