Quadratic Approximation of Generalized Tribonacci Sequences
Discussiones Mathematicae. General Algebra and Applications, Tome 38 (2018) no. 2, pp. 227-237
Voir la notice de l'article provenant de la source Library of Science
In this paper, we give quadratic approximation of generalized Tribonacci sequence {V_n}_n≥0 defined by V_n = rV_n−1 + sV_n−2 + tV_n−3 (n ≥ 3) and use this result to give the matrix form of the n-th power of a companion matrix of {V_n}_n≥0. Then we re-prove the cubic identity or Cassini-type formula for {V_n}_n≥0 and the Binet’s formula of the generalized Tribonacci quaternions.
Keywords:
Binet’s formula, companion matrix, generalized Tribonacci sequence, Narayana number, Padovan number, quadratic approximation, Tribonacci number
@article{DMGAA_2018_38_2_a5,
author = {Cerda-Morales, Gamaliel},
title = {Quadratic {Approximation} of {Generalized} {Tribonacci} {Sequences}},
journal = {Discussiones Mathematicae. General Algebra and Applications},
pages = {227--237},
publisher = {mathdoc},
volume = {38},
number = {2},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGAA_2018_38_2_a5/}
}
TY - JOUR AU - Cerda-Morales, Gamaliel TI - Quadratic Approximation of Generalized Tribonacci Sequences JO - Discussiones Mathematicae. General Algebra and Applications PY - 2018 SP - 227 EP - 237 VL - 38 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2018_38_2_a5/ LA - en ID - DMGAA_2018_38_2_a5 ER -
Cerda-Morales, Gamaliel. Quadratic Approximation of Generalized Tribonacci Sequences. Discussiones Mathematicae. General Algebra and Applications, Tome 38 (2018) no. 2, pp. 227-237. http://geodesic.mathdoc.fr/item/DMGAA_2018_38_2_a5/