Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2018_38_2_a3, author = {Khairnar, Anil and Waphare, B.N.}, title = {Conrad{\textquoteright}s {Partial} {Order} on {P.Q.-Baer} {*-Rings}}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {207--219}, publisher = {mathdoc}, volume = {38}, number = {2}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2018_38_2_a3/} }
TY - JOUR AU - Khairnar, Anil AU - Waphare, B.N. TI - Conrad’s Partial Order on P.Q.-Baer *-Rings JO - Discussiones Mathematicae. General Algebra and Applications PY - 2018 SP - 207 EP - 219 VL - 38 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2018_38_2_a3/ LA - en ID - DMGAA_2018_38_2_a3 ER -
Khairnar, Anil; Waphare, B.N. Conrad’s Partial Order on P.Q.-Baer *-Rings. Discussiones Mathematicae. General Algebra and Applications, Tome 38 (2018) no. 2, pp. 207-219. http://geodesic.mathdoc.fr/item/DMGAA_2018_38_2_a3/
[1] A. Abian, Direct product decomposition of commutative semisimple rings, Proc. Amer. Math. Soc. 24 (1970) 502–507. doi:10.2307/2037396
[2] J.K. Baksalary and S.K. Mitra, Left-star and right-star partial ordering, Linear Algebra Appl. 149 (1991) 73–89. doi:10.1016/0024-3795(91)90326-R
[3] S.K. Berberian, Baer * Rings, Grundlehren Math.Wiss. Band 195. Vol. 296 (Berlin, Springer, 1972). doi:10.1007/978-3-642-15071-5
[4] G.F. Birkenmeier, J.K. Park and S.T. Rizvi, Principally quasi-Baer rings hulls, Advances in Ring Theory Trends in Mathematics, 47–61 (Birkhäuser Basel, 2010). doi:10.1007/978-3-0346-0286-0\_4
[5] G.F. Birkenmeier, J.K. Park and S.R. Tariq, Extensions of Rings and Modules (New York, Birkhäuser, 2013). doi:10.1007/978-0-387-92716-9
[6] W.D. Burgess and R. Raphael, On Conrad’s partial order relation on semiprime rings and on semigroups, Semigroup Forum 16 (1978) 133–140. http://eudml.org/doc/134282
[7] J. Cīrulis, Quasi-orthomodular posets and weak BCK-algebras, Order 31 (2014) 403–419. doi:10.1007/s11083-013-9309-1
[8] P.F. Conrad, The hulls of semiprime rings, Austral. Math. Soc. 12 (1975) 311–314. doi:10.1017/S0004972700023911
[9] G. Dolinar and J. Marovt, Star partial order on B (H), Linear Algebra Appl. 434 (2011) 319–326. doi:10.1016/j.laa.2010.08.023
[10] G. Dolinar, B. Kuzma and J. Marovt, A note on partial orders of Hartwig, Mitsch, and Šemrl, Appl. Math. and Comp. 270 (2015) 711–713. doi:10.1016/j.amc.2015.08.066
[11] M.P. Drazin, Natural structure on semigroup with involution, Bull. Amer. Math. Soc. 84 (1978) 139–141. https://projecteuclid.org/euclid.bams/1183540393
[12] R.E. Hartwig, How to partially order regular elements, Math. Japon. 25 (1980) 1–13.
[13] R.E. Hartwig, Pseudo lattice properties of the star-orthogonal partial ordering for star-regular rings., Proc. Amer. Math. Soc. 77 (1979) 299–303. doi:10.2307/2042174
[14] C.Y. Hong, N.K. Kim, T.K. Kwak, Ore extension of Baer and PP rings, J. Pure Appl. Algebra 151 (2000) 215–226. doi:10.1016/S0022-4049(99)00020-1
[15] M.F. Janowitz, On the * -order for Rickart * -rings, Algebra Universalis 16 (1983) 360–369. doi:10.1007/BF01191791
[16] I. Kaplansky, Rings of Operators (W.A. Benjamin, Inc., New York-Amsterdam, 1968).
[17] A. Khairnar and B.N. Waphare, Unitification of weakly p.q.-Baer * -rings, Southeast Asian Bull. Math. (to appear). arXiv:1612.01681
[18] A. Khairnar and B.N. Waphare, Order properties of generalized projections, Linear Multilinear Algebra 65 (2017) 1446–1461. doi:10.1080/03081087.2016.1242554
[19] A. Khairnar and B.N. Waphare, Generalized Projections in Z n, AKCE Int. J. Graphs Comb. doi:10.1016/j.akcej.2018.01.010
[20] A. Khairnar and B.N. Waphare, A Sheaf Representation of Principally Quasi-Baer * -Rings, Algebr. Represent. Theory. https://doi.org/10.1007/s10468-017-9758-0
[21] J.Y. Kim, On reflexive principally quasi-Baer rings, Korean J. Math. 17 (2009) 233–236.
[22] I. Krēmere, Left-star order structure of Rickart * -ring, Linear Multilinear Algebra 64 (2016) 341–352. doi:10.1080/03081087.2015.1040369
[23] F.W. Levi, Ordered groups, Proc. Indian Acad. Sci. A 16 (1942) 256–263.
[24] S. Maeda, On the lattice of projections of a Baer * -ring, J. Sci. Hiroshima Univ. Ser. A 22 (1958) 75–88.
[25] P. Šemrl, Automorphisms of B (H) with respect to minus partial order, J. Math. Anal. Appl. 369 (2010) 205–213. doi:10.1016/j.jmaa.2010.02.059
[26] B.N. Waphare and Anil Khairnar, Semi-Baer modules, J. Algebra Appl. 14 (2015) 1550145 (12 pages). doi:10.1142/S0219498815501455