Local Cohomology Modules and Relative Cohen-Macaulayness
Discussiones Mathematicae. General Algebra and Applications, Tome 38 (2018) no. 2, pp. 197-205.

Voir la notice de l'article provenant de la source Library of Science

Let (R, m) denote a commutative Noetherian local ring and let M be a finite R-module. In this paper, we study relative Cohen-Macaulay rings with respect to a proper ideal a of R and give some results on such rings in relation with Artinianness, Non-Artinianness of local cohomology modules and Lyubeznik numbers. We also present some related examples to this issue.
Keywords: local cohomology modules, Lyubeznik numbers, Non-Artinian modules, relative Cohen-Macaulayness
@article{DMGAA_2018_38_2_a2,
     author = {Zohouri, M. Mast},
     title = {Local {Cohomology} {Modules} and {Relative} {Cohen-Macaulayness}},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {197--205},
     publisher = {mathdoc},
     volume = {38},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2018_38_2_a2/}
}
TY  - JOUR
AU  - Zohouri, M. Mast
TI  - Local Cohomology Modules and Relative Cohen-Macaulayness
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2018
SP  - 197
EP  - 205
VL  - 38
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2018_38_2_a2/
LA  - en
ID  - DMGAA_2018_38_2_a2
ER  - 
%0 Journal Article
%A Zohouri, M. Mast
%T Local Cohomology Modules and Relative Cohen-Macaulayness
%J Discussiones Mathematicae. General Algebra and Applications
%D 2018
%P 197-205
%V 38
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2018_38_2_a2/
%G en
%F DMGAA_2018_38_2_a2
Zohouri, M. Mast. Local Cohomology Modules and Relative Cohen-Macaulayness. Discussiones Mathematicae. General Algebra and Applications, Tome 38 (2018) no. 2, pp. 197-205. http://geodesic.mathdoc.fr/item/DMGAA_2018_38_2_a2/

[1] M.P. Brodmann and R.Y. Sharp, Local Cohomology: an Algebraic Introduction with Geometric Applications (Cambridge University Press, Cambridge, 2013).

[2] CoCoATeam, CoCoA: A system for doing computation in Commutative Algebra, cocoa.dima.unige.it.

[3] M.T. Dibaei and A. Vahidi, Artinian and non-Artinian local cohomology modules, Canad. Math. Bull. 54 (2011) 619–629. doi:10.4153/CMB-2011-042-5

[4] M.T. Dibaei and S. Yassemi, Associated primes and cofiniteness of local cohomology modules, Manuscripta Math. 117 (2005) 199–205. doi:10.1007/s00229-005-0538-5

[5] M. Eghbali, On set theoretically and cohomologically complete intersection ideals, Canad. Math. Bull. 57 (2014) 477–484.

[6] V. Erdogdu and T. Yildirim, On the cohomological dimension of local cohomology modules, arXiv:1504.01148v2 [math.AC].

[7] R. Hartshorne, Affine duality and cofiniteness, Invent. Math. 9 (1970) 145–164. doi:10.1007/BF01404554

[8] J. Herzog, Komplex Auflosungen and Dualitat in der Lockalen Algebra, Habilitationss chrift (Universitat Regensburg, 1970).

[9] L. Melkersson, Some applications of a criterion for artinianness of a module, J. Pure Appl. Algebra 101 (1995) 291–303. doi:10.1016/0022-4049(94)00059-R

[10] M. Mast Zohouri, KH. Ahmadi Amoli, and S.O. Faramarzi, Relative Cohen-Macaulay filtered modules with a view toward relative Cohen-Macaulay modules, Math. Reports 20 (70), 3 (2018).

[11] G. Lyubeznik, Finiteness properties of local cohomological modules (an application of D-modules to Commutative Algebra), Invent. Math. 113 (1993) 41–55. doi:10.1007/BF01244301

[12] R. Lü and Z. Tang, The f-depth of an ideal on a module, Proc. Amer. Math. Soc. 130 (2001) 1905-1912. doi:10.1090/S0002-9939-01-06269-4

[13] A. Ooishi, Matlis duality and the width of a module, Hiroshima Math. J. 6 (1976) 573–587. projecteuclid.org/euclid.hmj/1206136213.

[14] M. Rahro Zargar, Some duality and equivalence results, arXiv:1308.3071v2 [math.AC].

[15] A.S. Richardson, Co-localization, co-support and local cohomology, Rocky Mountain J. Math. 36 (2006) 1679–1703. doi:10.1216/rmjm/1181069391

[16] N. Suzuki, On the generalized local cohomology and its duality, J. Math. Kyoto Univ. 18 (1978) 71–85. doi:10.1215/kjm/1250522630