The Armendariz Graph of a Ring
Discussiones Mathematicae. General Algebra and Applications, Tome 38 (2018) no. 2, pp. 189-196.

Voir la notice de l'article provenant de la source Library of Science

In this paper we initiate the study of Armendariz graph of a commutative ring R and investigate the basic properties of this graph such as diameter, girth, domination number, etc. The Armendariz graph of a ring R, denoted by A(R), is an undirected graph with nonzero zero-divisors of R[x] (i.e., Z(R[x])^∗) as the vertex set, and two distinct vertices f(x)=∑_i=0^na_ix^i and g(x)=∑_j=0^mb_jx^j are adjacent if and only if a_ib_j = 0, for all i, j. It is shown that A(R), a subgraph of Γ(R[x]), the zero divisor graph of the polynomial ring R[x], have many graph properties in common with Γ(R[x]).
Keywords: Armendariz property, diameter, girth, zero-divisor graph
@article{DMGAA_2018_38_2_a1,
     author = {Abdio\u{g}lu, Cihat and \c{C}elikel, Ece Yetkin and Das, Angsuman},
     title = {The {Armendariz} {Graph} of a {Ring}},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {189--196},
     publisher = {mathdoc},
     volume = {38},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2018_38_2_a1/}
}
TY  - JOUR
AU  - Abdioğlu, Cihat
AU  - Çelikel, Ece Yetkin
AU  - Das, Angsuman
TI  - The Armendariz Graph of a Ring
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2018
SP  - 189
EP  - 196
VL  - 38
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2018_38_2_a1/
LA  - en
ID  - DMGAA_2018_38_2_a1
ER  - 
%0 Journal Article
%A Abdioğlu, Cihat
%A Çelikel, Ece Yetkin
%A Das, Angsuman
%T The Armendariz Graph of a Ring
%J Discussiones Mathematicae. General Algebra and Applications
%D 2018
%P 189-196
%V 38
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2018_38_2_a1/
%G en
%F DMGAA_2018_38_2_a1
Abdioğlu, Cihat; Çelikel, Ece Yetkin; Das, Angsuman. The Armendariz Graph of a Ring. Discussiones Mathematicae. General Algebra and Applications, Tome 38 (2018) no. 2, pp. 189-196. http://geodesic.mathdoc.fr/item/DMGAA_2018_38_2_a1/

[1] D.F. Anderson and P.S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 (1999) 434–447. doi:10.1006/jabr.1998.7840

[2] M. Axtell, J. Coykendall and J. Stickles, Zero-divisor graphs of polynomials and power series over commutative rings, Commun. Algebra 33 (2005) 2043–2050. doi:10.1081/AGB-200063357

[3] I. Beck, Coloring of commutative rings, J. Algebra 116 (1988) 208–226. doi:10.1016/0021-8693(88)90202-5

[4] B. Bollobás, Modern Graph Theory, Graduate Texts in Mathematics (New York, Springer-Verlag, 1998). doi:10.1007/978-1-4612-0619-4

[5] T.W. Hungerford, Algebra. Graduate Texts in Mathematics 73 (New York, Springer-Verlag, 1974).

[6] I. Kaplansky, Commutative Rings (rev. ed. Chicago, Univ. of Chicago Press, 1974).

[7] T.G. Lucas, The diameter of a zero-divisor graph, J. Algebra 301 (2006) 174–193. doi:10.1016/j.jalgebra.2006.01.019

[8] N.H. McCoy, (1942), Remarks on divisors of zero, Amer. Math. Monthly 49 (1942) 286–295. doi:10.2307/2303094

[9] M.B. Rege and S. Chhawchharia, Armendariz rings, Proc. Japan Acad. Ser. A Math. Sci. 73 (19970 14–17. doi:10.3792/pjaa.73.14