Congruences and Trajectories in Planar Semimodular Lattices
Discussiones Mathematicae. General Algebra and Applications, Tome 38 (2018) no. 1, pp. 131-142

Voir la notice de l'article provenant de la source Library of Science

A 1955 result of J. Jakubík states that for the prime intervals 𝔭 and 𝔮 of a finite lattice, con(𝔭) ≥ con(𝔮) iff 𝔭 is congruence-projective to 𝔮 (via intervals of arbitrary size). The problem is how to determine whether con(𝔭) ≥ con(𝔮) involving only prime intervals. Two recent papers approached this problem in different ways. G. Czédli’s used trajectories for slim rectangular lattices-a special subclass of slim, planar, semimodular lattices. I used the concept of prime-projectivity for arbitrary finite lattices. In this note I show how my approach can be used to reprove Czédli’s result and generalize it to arbitrary slim, planar, semimodular lattices.
Keywords: semimodular lattice, planar lattice, slim lattice, rectangular lattice, congruence, trajectory, prime interval
@article{DMGAA_2018_38_1_a9,
     author = {Gr\"atzer, G.},
     title = {Congruences and {Trajectories} in {Planar} {Semimodular} {Lattices}},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {131--142},
     publisher = {mathdoc},
     volume = {38},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2018_38_1_a9/}
}
TY  - JOUR
AU  - Grätzer, G.
TI  - Congruences and Trajectories in Planar Semimodular Lattices
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2018
SP  - 131
EP  - 142
VL  - 38
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2018_38_1_a9/
LA  - en
ID  - DMGAA_2018_38_1_a9
ER  - 
%0 Journal Article
%A Grätzer, G.
%T Congruences and Trajectories in Planar Semimodular Lattices
%J Discussiones Mathematicae. General Algebra and Applications
%D 2018
%P 131-142
%V 38
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2018_38_1_a9/
%G en
%F DMGAA_2018_38_1_a9
Grätzer, G. Congruences and Trajectories in Planar Semimodular Lattices. Discussiones Mathematicae. General Algebra and Applications, Tome 38 (2018) no. 1, pp. 131-142. http://geodesic.mathdoc.fr/item/DMGAA_2018_38_1_a9/