Congruences and Trajectories in Planar Semimodular Lattices
Discussiones Mathematicae. General Algebra and Applications, Tome 38 (2018) no. 1, pp. 131-142.

Voir la notice de l'article provenant de la source Library of Science

A 1955 result of J. Jakubík states that for the prime intervals 𝔭 and 𝔮 of a finite lattice, con(𝔭) ≥ con(𝔮) iff 𝔭 is congruence-projective to 𝔮 (via intervals of arbitrary size). The problem is how to determine whether con(𝔭) ≥ con(𝔮) involving only prime intervals. Two recent papers approached this problem in different ways. G. Czédli’s used trajectories for slim rectangular lattices-a special subclass of slim, planar, semimodular lattices. I used the concept of prime-projectivity for arbitrary finite lattices. In this note I show how my approach can be used to reprove Czédli’s result and generalize it to arbitrary slim, planar, semimodular lattices.
Keywords: semimodular lattice, planar lattice, slim lattice, rectangular lattice, congruence, trajectory, prime interval
@article{DMGAA_2018_38_1_a9,
     author = {Gr\"atzer, G.},
     title = {Congruences and {Trajectories} in {Planar} {Semimodular} {Lattices}},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {131--142},
     publisher = {mathdoc},
     volume = {38},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2018_38_1_a9/}
}
TY  - JOUR
AU  - Grätzer, G.
TI  - Congruences and Trajectories in Planar Semimodular Lattices
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2018
SP  - 131
EP  - 142
VL  - 38
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2018_38_1_a9/
LA  - en
ID  - DMGAA_2018_38_1_a9
ER  - 
%0 Journal Article
%A Grätzer, G.
%T Congruences and Trajectories in Planar Semimodular Lattices
%J Discussiones Mathematicae. General Algebra and Applications
%D 2018
%P 131-142
%V 38
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2018_38_1_a9/
%G en
%F DMGAA_2018_38_1_a9
Grätzer, G. Congruences and Trajectories in Planar Semimodular Lattices. Discussiones Mathematicae. General Algebra and Applications, Tome 38 (2018) no. 1, pp. 131-142. http://geodesic.mathdoc.fr/item/DMGAA_2018_38_1_a9/

[1] G. Czédli, Patch extensions and trajectory colorings of slim rectangular lattices, Algebra Universalis 72 (2014) 125-154. doi: 10.1007/s00012-014-0294-z

[2] G. Czédli, A note on congruence lattices of slim semimodular lattices, Algebra Universalis 72 (2014) 225-230. doi: 10.1007/s00012-014-0286-z

[3] G. Czédli, Finite convex geometries of circles, Discrete Math. 330 (2014) 61-75. doi: 10.1016/j.disc.2014.04.017

[4] G. Czédli, The asymptotic number of planar, slim, semimodular lattice diagrams, Order 33 (2016) 231-237. doi: 10.1007/s11083-015-9361-0

[5] G. Czédli, Quasiplanar diagrams and slim semimodular lattices, Order 33 (2016) 239-262.

[6] G. Czédli, Diagrams and rectangular extensions of planar semimodular lattices, Algebra Universalis 77 (2017) 443-498.

[7] G. Czédli, T. Dékány, L. Ozsvárt, N. Szakács and B. Udvari, On the number of slim, semimodular lattices, Math. Slovaca 66 (2016) 5-18.

[8] G. Czédli and G. Makay, Swing lattice game and a short proof of the swing lemma for planar semimodular lattices, Acta Sci. Math. (Szeged) 83 (2017), 13-29.

[9] G. Czédli and G. Grätzer, Planar Semimodular Lattices: Structure and Diagrams, Chapter 4 in [30].

[10] G. Czédli, G. Grätzer, and H. Lakser, Congruence structure of planar semimodular lattices: The General Swing Lemma, Algebra Universalis (2017), in production.

[11] G. Czédli and E.T. Schmidt, The Jordan-Hölder theorem with uniqueness for groups and semimodular lattices, Algebra Universalis 66 (2011) 69-79.

[12] G. Czédli and E.T. Schmidt, Slim semimodular lattices, I. A visual approach, Order 29 (2012), 481-497.

[13] G. Czédli and E.T. Schmidt, Slim semimodular lattices, II. A description by patchwork systems, Order 30 (2013), 689-721.

[14] G. Grätzer, The Congruences of a Finite Lattice, A Proof-by-Picture Approach (Birkhäuser Boston, 2006).

[15] G. Grätzer, Lattice Theory: Foundation (Birkhäuser Verlag, Basel, 2011).

[16] G. Grätzer, Notes on planar semimodular lattices, VI. On the structure theorem of planar semimodular lattices, Algebra Universalis 69 (2013) 301-304.

[17] G. Grätzer, Planar Semimodular Lattices: Congruences, Chapter 5 in [30].

[18] G. Grätzer, A technical lemma for congruences of finite lattices, Algebra Universalis 74 (2014) 53.

[19] G. Grätzer, Congruences and prime-perspectivities in finite lattices, Algebra Universalis 74 (2015), 351-359. doi: 10.1007/s00012-015-0355-y

[20] G. Grätzer, On a result of Gábor Czédli concerning congruence lattices of planar semimodular lattices, Acta Sci. Math. (Szeged) 81 (2015) 25-32.

[21] G. Grätzer, Congruences in slim, planar, semimodular lattices: The Swing Lemma, Acta Sci. Math. (Szeged) 81 (2015) 381-397.

[22] G. Grätzer, The Congruences of a Finite Lattice, A Proof-by-Picture Approach, second edition (Birkhäuser, 2016).

[23] G. Grätzer and E. Knapp, Notes on planar semimodular lattices, I. Construction, Acta Sci. Math. (Szeged) 73 (2007), 445-462.

[24] G. Grätzer and E. Knapp, A note on planar semimodular lattices, Algebra Universalis 58 (2008) 497-499. doi: 10.1007/s00012-008-2089-6

[25] G. Grätzer and E. Knapp, Notes on planar semimodular lattices, II. Congruences, Acta Sci. Math. (Szeged) 74 (2008) 37-47.

[26] G. Grätzer and E. Knapp, Notes on planar semimodular lattices, III. Rectangular lattices, Acta Sci. Math. (Szeged) 75 (2009) 29-48.

[27] G. Grätzer and E. Knapp, Notes on planar semimodular lattices, IV. The size of a minimal congruence lattice representation with rectangular lattices, Acta Sci. Math. (Szeged) 76 (2010), 3-26.

[28] G. Grätzer, H. Lakser and E.T. Schmidt, Congruence lattices of finite semimodular lattices, Canad. Math. Bull. 41 (1998), 290-297. doi: 10.4153/CMB-1998-041-7

[29] G. Grätzer and E.T. Schmidt, Ideals and congruence relations in lattices, Acta Math. Acad. Sci. Hungar. 9 (1958) 137-175. doi: 10.1007/BF02023870

[30] G. Grätzer and F. Wehrung eds., Lattice Theory: Special Topics and Applications, Volume 1 (Birkhäuser Verlag, Basel, 2014).

[31] G. Grätzer and F. Wehrung eds., Lattice Theory: Special Topics and Applications, Volume 2 (Birkhäuser Verlag, Basel, 2016).

[32] J. Jakubík, Congruence relations and weak projectivity in lattices, (Slovak) Časopis Pěst. Mat. 80 (1955) 206-216.