Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2018_38_1_a7, author = {Lekkoksung, Nareupanat and Jampachon, Prakit}, title = {Idempotent {Elements} of {Weak} {Projection} {Generalized} {Hypersubstitutions}}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {99--114}, publisher = {mathdoc}, volume = {38}, number = {1}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2018_38_1_a7/} }
TY - JOUR AU - Lekkoksung, Nareupanat AU - Jampachon, Prakit TI - Idempotent Elements of Weak Projection Generalized Hypersubstitutions JO - Discussiones Mathematicae. General Algebra and Applications PY - 2018 SP - 99 EP - 114 VL - 38 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2018_38_1_a7/ LA - en ID - DMGAA_2018_38_1_a7 ER -
%0 Journal Article %A Lekkoksung, Nareupanat %A Jampachon, Prakit %T Idempotent Elements of Weak Projection Generalized Hypersubstitutions %J Discussiones Mathematicae. General Algebra and Applications %D 2018 %P 99-114 %V 38 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGAA_2018_38_1_a7/ %G en %F DMGAA_2018_38_1_a7
Lekkoksung, Nareupanat; Jampachon, Prakit. Idempotent Elements of Weak Projection Generalized Hypersubstitutions. Discussiones Mathematicae. General Algebra and Applications, Tome 38 (2018) no. 1, pp. 99-114. http://geodesic.mathdoc.fr/item/DMGAA_2018_38_1_a7/
[1] A.H. Clifford and G.B. Preston, The Algebraic Theory of Semigroups, Vol. I, no. 2 (The American Mathematical Society, 1964).
[2] K. Denecke and L. Freiberg, The algebra of strongly full terms, Novi Sad J. Math. 34 (2004) 87-98.
[3] K. Denecke, D. Lau, R. Pöschel and D. Schweigert, Hyperidentities, hyperequational clases and clone congruences, Contribution to General Algebra 7 (Verlag Hölder-Pichler-Tempsky, Wien, 1991) 97-118.
[4] D. Denecke and S. Leeratanavalee, Tree transformations defined by generalized hypersubstitutions, Sci. Math. Jpn. Online 6 (2002) 355-366.
[5] K. Denecke and S.L. Wismath, Hyperidentities and Clones (Gordon and Breach science Publishers, 2000).
[6] K. Denecke and S.L. Wismath, Universal Algebra and Applications in Theoretical Computer Science (Boca Raton: Chapman & Hall/CRC, 2002).
[7] J. Koppitz and K. Denecke, M-Solid Varieties of Algebras (Springer Science+ Business Media, Inc., 2006).
[8] S. Leeratanavalee, Structural properties of generalized hypersubstitutions, Kyungpook Math. J. 44 (2004) 261-267.
[9] S. Leeratanavalee, Submonoids of generalized hypersubstitutions, Demonstr. Math. 15 (2007) 13-22. doi: 10.1515/dema-2007-0103
[10] S. Leeratanavalee, Idempotent element of WPG(2, 2) ∪ {σid}, Novi Sad J. Math. 41 (2011) 99-109.
[11] S. Leeratanavalee and K. Denecke, Generalized hypersubstitutions and strongly solid varieties, General Algebra and Applications, Proceeding of the “59th workshop on general algebra 15th conference for young algebraists Potsdam 2000” (Shaker Verlag, 2000) 135-145.
[12] N. Lekkoksung and P. Jampachon, Idempotent elements of pre-generalized hypersubstitutions of type (m, n), Ital. J. Pure Appl. Math. 36 (2016) 827-842.
[13] W. Puninagool and S. Leeratanavalee, Idempotent pre-generalized hypersubstitutions of type τ = (2, 2), An. S¸tiint¸. Univ. “Ovidius” Constant¸a Ser. Mat. 15 (2007) 55-70.
[14] W. Puninagool and S. Leeratanavalee, The order of generalized hypersubstitutions of type τ = (2), Int. J. Math. Math. Sci. 2008 (2008) Article ID 263541, 8 pages. doi: 10.1155/2008/263541
[15] W. Puninagool and S. Leeratanavalee, The monoid of generalized hypersubstituions of type τ = (n), Discuss. Math. Gen. Algebra Appl. 30 (2010) 173-191. doi: 10.7151/dmgaa.1168
[16] W. Puninagool and S. Leeratanavalee, All regular elements in HypG(2), Kyungpook Math. J. 51 (2011) 139-143. doi: 10.5666/KMJ.2011.51.2.139