Generalized Chebyshev Polynomials
Discussiones Mathematicae. General Algebra and Applications, Tome 38 (2018) no. 1, pp. 79-89

Voir la notice de l'article provenant de la source Library of Science

Let h(x) be a non constant polynomial with rational coefficients. Our aim is to introduce the h(x)-Chebyshev polynomials of the first and second kind T_n and U_n. We show that they are in a ℚ-vectorial subspace E_n(x) of ℚ[x] of dimension n. We establish that the polynomial sequences (h^kT_n−k)_k and (h^kU_n−k)_k, (0 ≤ k ≤ n − 1) are two bases of 𝔼_n(x) for which T_n and U_n admit remarkable integer coordinates.
Keywords: Chebyshev polynomials, integer coordinates, polynomial bases
@article{DMGAA_2018_38_1_a5,
     author = {Abchiche, Mourad and Belbachir, Hac\'ene},
     title = {Generalized {Chebyshev} {Polynomials}},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {79--89},
     publisher = {mathdoc},
     volume = {38},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2018_38_1_a5/}
}
TY  - JOUR
AU  - Abchiche, Mourad
AU  - Belbachir, Hacéne
TI  - Generalized Chebyshev Polynomials
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2018
SP  - 79
EP  - 89
VL  - 38
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2018_38_1_a5/
LA  - en
ID  - DMGAA_2018_38_1_a5
ER  - 
%0 Journal Article
%A Abchiche, Mourad
%A Belbachir, Hacéne
%T Generalized Chebyshev Polynomials
%J Discussiones Mathematicae. General Algebra and Applications
%D 2018
%P 79-89
%V 38
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2018_38_1_a5/
%G en
%F DMGAA_2018_38_1_a5
Abchiche, Mourad; Belbachir, Hacéne. Generalized Chebyshev Polynomials. Discussiones Mathematicae. General Algebra and Applications, Tome 38 (2018) no. 1, pp. 79-89. http://geodesic.mathdoc.fr/item/DMGAA_2018_38_1_a5/