Generalized Chebyshev Polynomials
Discussiones Mathematicae. General Algebra and Applications, Tome 38 (2018) no. 1, pp. 79-89.

Voir la notice de l'article provenant de la source Library of Science

Let h(x) be a non constant polynomial with rational coefficients. Our aim is to introduce the h(x)-Chebyshev polynomials of the first and second kind T_n and U_n. We show that they are in a ℚ-vectorial subspace E_n(x) of ℚ[x] of dimension n. We establish that the polynomial sequences (h^kT_n−k)_k and (h^kU_n−k)_k, (0 ≤ k ≤ n − 1) are two bases of 𝔼_n(x) for which T_n and U_n admit remarkable integer coordinates.
Keywords: Chebyshev polynomials, integer coordinates, polynomial bases
@article{DMGAA_2018_38_1_a5,
     author = {Abchiche, Mourad and Belbachir, Hac\'ene},
     title = {Generalized {Chebyshev} {Polynomials}},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {79--89},
     publisher = {mathdoc},
     volume = {38},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2018_38_1_a5/}
}
TY  - JOUR
AU  - Abchiche, Mourad
AU  - Belbachir, Hacéne
TI  - Generalized Chebyshev Polynomials
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2018
SP  - 79
EP  - 89
VL  - 38
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2018_38_1_a5/
LA  - en
ID  - DMGAA_2018_38_1_a5
ER  - 
%0 Journal Article
%A Abchiche, Mourad
%A Belbachir, Hacéne
%T Generalized Chebyshev Polynomials
%J Discussiones Mathematicae. General Algebra and Applications
%D 2018
%P 79-89
%V 38
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2018_38_1_a5/
%G en
%F DMGAA_2018_38_1_a5
Abchiche, Mourad; Belbachir, Hacéne. Generalized Chebyshev Polynomials. Discussiones Mathematicae. General Algebra and Applications, Tome 38 (2018) no. 1, pp. 79-89. http://geodesic.mathdoc.fr/item/DMGAA_2018_38_1_a5/

[1] P. Appell and J. Kampé de Fériet, Fonctions Hypergéométriques et Hypersphériques. Polynomes d’Hermite, Gauthier-Villars (Paris, 1926).

[2] H. Belbachir and F. Bencherif, On some properties of Chebychev polynomials, Discuss. Math. General Alg. and Appl. 28 (2008) 121-133. doi: 10.7151/dmgaa.1138

[3] H. Belbachir and F. Bencherif, Linear recurrent sequences and powers of a square matrix, Integers 6 (2006), A12, 17pp.

[4] H. Belbachir and F. Bencherif, On some properties of Bivariate Fibonacci and Lucas Polynomials, J. Integer Sequences 11 (2008) 08.2.6.

[5] H. Belbachir and A. Benmezai, Expansion of Fibonacci and Lucas polynomials: An Answer to Prodinger’s question, J. Integer Sequences, Article 12.7.6, 2012.

[6] C. Cesarano, Integral representations and new generating functions of Chebyshev polynomials, Hacet. J. Math. Stat. 44 (2015) 535-546. doi: 10.15672/hjms.20154610029

[7] C. Cesarano, Generalized Chebyshev polynomials, Hacet. J. Math. Stat. 43 (2014) 731-740.

[8] C. Cesarano, Identities and generating functions on Chebyshev polynomials, Georgian Math. J. 19 (2012) 427-440. doi: 10.1515/gmj-2012-0031

[9] E. Lucas, Théorie des Nombres (Gautier-Villars, Paris, 1891).

[10] H. Prodinger, On the expansion of Fibonacci and Lucas polynomials, J. Integer Sequences 12 (2009), Article 09.1.6.

[11] T.J. Rivlin, Chebychev Polynomials: from Approximation Theory to Algebra and Number Theory, Second Edition (Wiley interscience, 1990).