Generalized Chebyshev Polynomials
Discussiones Mathematicae. General Algebra and Applications, Tome 38 (2018) no. 1, pp. 79-89
Voir la notice de l'article provenant de la source Library of Science
Let h(x) be a non constant polynomial with rational coefficients. Our aim is to introduce the h(x)-Chebyshev polynomials of the first and second kind T_n and U_n. We show that they are in a ℚ-vectorial subspace E_n(x) of ℚ[x] of dimension n. We establish that the polynomial sequences (h^kT_n−k)_k and (h^kU_n−k)_k, (0 ≤ k ≤ n − 1) are two bases of 𝔼_n(x) for which T_n and U_n admit remarkable integer coordinates.
Keywords:
Chebyshev polynomials, integer coordinates, polynomial bases
@article{DMGAA_2018_38_1_a5,
author = {Abchiche, Mourad and Belbachir, Hac\'ene},
title = {Generalized {Chebyshev} {Polynomials}},
journal = {Discussiones Mathematicae. General Algebra and Applications},
pages = {79--89},
publisher = {mathdoc},
volume = {38},
number = {1},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGAA_2018_38_1_a5/}
}
TY - JOUR AU - Abchiche, Mourad AU - Belbachir, Hacéne TI - Generalized Chebyshev Polynomials JO - Discussiones Mathematicae. General Algebra and Applications PY - 2018 SP - 79 EP - 89 VL - 38 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2018_38_1_a5/ LA - en ID - DMGAA_2018_38_1_a5 ER -
Abchiche, Mourad; Belbachir, Hacéne. Generalized Chebyshev Polynomials. Discussiones Mathematicae. General Algebra and Applications, Tome 38 (2018) no. 1, pp. 79-89. http://geodesic.mathdoc.fr/item/DMGAA_2018_38_1_a5/