Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2018_38_1_a3, author = {Rao, Marapureddy Murali Krishna}, title = {Ideals in {Ordered} {\ensuremath{\Gamma}-Semirings}}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {47--68}, publisher = {mathdoc}, volume = {38}, number = {1}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2018_38_1_a3/} }
Rao, Marapureddy Murali Krishna. Ideals in Ordered Γ-Semirings. Discussiones Mathematicae. General Algebra and Applications, Tome 38 (2018) no. 1, pp. 47-68. http://geodesic.mathdoc.fr/item/DMGAA_2018_38_1_a3/
[1] P.J. Allen, A fundamental theorem of homomorphism for semirings, Proc. Amer. Math. Soc. 21 (1969) 412-416. doi: 10.1090/S0002-9939-1969-2400237575-4241
[2] S.S. Ahn, Y.B. Jun and H.S. Kim, Ideals and quotients of incline algebras, Comm. Korean Math. Soc. 16 (2001) 2573-583.
[3] S.S. Ahn and H.S. Kim, On r-ideals in incline algebras, Comm. Korean Math. Soc. 17 (2002) 229-235.
[4] T.K. Dutta and S. Kar, On regular ternary semirings, Advances in algebra, Proceedings of the ICM Satellite conference in algebra and related topics (World Scientific, 2003), 343-355.
[5] M. Henriksen, Ideals in semirings with commutative addition, Amer. Math. Soc. Notices 5 (1958) 321.
[6] R.D. Jagatap and Y.S. Pawar, Quasi-ideals and minimal quasi-ideals in semirings, Novi Sad J. Math. 39 (2009) 79-87.
[7] H. Lehmer, A ternary analogue of abelian groups, Amer. J. Math. 59 (1932) 329-338. doi: 10.2307/2370997
[8] W.G. Lister, Ternary rings, Tran. Amer. Math. Soc. 154 (1971) 37-55. doi: 10.2307/1995425
[9] M. Murali Krishna Rao, Γ-semirings-I, South. Asian Bull. Math. 19 (1995) 49-54.
[10] M. Murali Krishna Rao, Γ-semirings-II, South. Asian Bull. Math. 21 (1997) 281-287.
[11] M. Murali Krishna Rao, The Jacobson radical of Γ-semiring, South. Asian Bull. Math. 23 (1999) 127-134.
[12] M. Murali Krishna Rao, On Γ-semiring with identity, Discuss. Math. Gen. Alg. and Appl. 37 (2017) 189-207. doi: 10.7151/dmgaa.1276
[13] M. Murali Krishna Rao, Left bi-quasi ideals of semirings, Bull. Int. Math. Virtual Inst. 8 (2018) 45-53. doi: 10.7251/BIMVI1801045R
[14] M. Murali Krishna Rao, T-fuzzy ideals in ordered Γ-semirings, Annals of Fuzzy Mathematics and Informatics 13 (2017) 253-276.
[15] M. Murali Krishna Rao, Bi-interior ideals of semigroups, accepted for publication in Discuss. Math. Gen. Alg. and Appl.
[16] M. Murali Krishna Rao, Bi-quasi-ideals and fuzzy bi-quasi ideals of Γ-semigroups, Bull. Int. Math. Virtual Inst. 7 (2017) 231-242. doi: 10.7251/BIMVI1801123M
[17] M. Murali Krishna Rao and B. Venkateswarlu, Regular Γ-incline and field Γ-semiring, Novi Sad J. Math. doi: emis.ams.org/journals/NSJOM/Papers/45-2/NSJOM-45-2-155-171
[18] M. Murali Krishna Rao, B. Venkateswarlu and N. Rafi, Left Bi-quasi-ideals of Γ-semirings, Asia Pacific J. Math. 4 (2017) 144-153.
[19] M. Murali Krishna Rao and B. Venkateswarlu, On generalized right derivations of Γ-incline, J. Int. Math. Virtual Inst. 6 (2016) 31-47. doi: 10.7251/BIMVI1801123M
[20] M. Murali Krishna Rao and B. Venkateswarlu, Right derivation of ordered Γ-semirings, Discuss. Math. Gen. Alg. and Appl. 36 (2016) 209-221. doi: 10.7151/dmgaa.1258
[21] N. Nobusawa, On a generalization of the ring theory, Osaka. J. Math. 1 (1964) 81-89. ir.library.osaka-u.ac.jp/dspace/bitstream/11094/12354/1/ojm 01-01-08.pdf
[22] M.K. Sen, On Γ-semigroup, in: Proc. of International Conference of Algebra and Its Application, Decker Publicaiton (New York, 1981) 301-308.
[23] H.S. Vandiver, Note on a simple type of algebra in which the cancellation law of addition does not hold, Bull. Amer. Math. 40 (1934) 914-920. doi: 10.1090/s0002-9904-1934-06003-8