Relation Between BE-Algebras and g-Hilbert Algebras
Discussiones Mathematicae. General Algebra and Applications, Tome 38 (2018) no. 1, pp. 33-45.

Voir la notice de l'article provenant de la source Library of Science

Hilbert algebras are important tools for certain investigations in algebraic logic since they can be considered as fragments of any propositional logic containing a logical connective implication and the constant 1 which is considered as the logical value “true” and as a generalization of this was defined the notion of g-Hilbert algebra. In this paper, we investigate the relationship between g-Hilbert algebras, gi-algebras, implication gruopoid and BE-algebras. In fact, we show that every g-Hilbert algebra is a self distributive BE-algebras and conversely. We show cannot remove the condition self distributivity. Therefore we show that any self distributive commutative BE-algebras is a gi-algebra and any gi-algebra is strong and transitive if and only if it is a commutative BE-algebra. We prove that the MV -algebra is equivalent to the bounded commutative BE-algebra.
Keywords: (Heyting, implication, (g-)Hilbert) algebra, BE/CI-algebra, dual (S/Q/BCK)-algebra, gi-algebra, implication groupoid, pre-logic, MV - algebra
@article{DMGAA_2018_38_1_a2,
     author = {Rezaei, Akbar and Saeid, Arsham Borumand},
     title = {Relation {Between} {BE-Algebras} and {g-Hilbert} {Algebras}},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {33--45},
     publisher = {mathdoc},
     volume = {38},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2018_38_1_a2/}
}
TY  - JOUR
AU  - Rezaei, Akbar
AU  - Saeid, Arsham Borumand
TI  - Relation Between BE-Algebras and g-Hilbert Algebras
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2018
SP  - 33
EP  - 45
VL  - 38
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2018_38_1_a2/
LA  - en
ID  - DMGAA_2018_38_1_a2
ER  - 
%0 Journal Article
%A Rezaei, Akbar
%A Saeid, Arsham Borumand
%T Relation Between BE-Algebras and g-Hilbert Algebras
%J Discussiones Mathematicae. General Algebra and Applications
%D 2018
%P 33-45
%V 38
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2018_38_1_a2/
%G en
%F DMGAA_2018_38_1_a2
Rezaei, Akbar; Saeid, Arsham Borumand. Relation Between BE-Algebras and g-Hilbert Algebras. Discussiones Mathematicae. General Algebra and Applications, Tome 38 (2018) no. 1, pp. 33-45. http://geodesic.mathdoc.fr/item/DMGAA_2018_38_1_a2/

[1] J.C. Abbott, Semi Boolean algebra, Matem. Vestnik 4 (1967) 177-198.

[2] A. Borumand Saeid, CI-algebra is equivalent to dual Q-algebra, J. Egypt. Math. Soc. 21 (2013) 1-2. doi: 10.1016/j.joems.2012.08.021

[3] R.A. Borzooei and J. Shohani, On generalized Hilbert algebras, Italian Journal of pure and Applied Mathematics 20 (2012) 71-86.

[4] R.A. Borzooei, A. Borumand Saeid, R. Ameri and A. Rezaei, Involutory BE- algebras, J. Math. Appl. 37 (2014) 13-26.

[5] J. Cirulis, Subtraction-like operations in nearsemilattices, Demonstratio Math. 43 (2010) 725-738. doi: 10.1515/dema-2013-0267

[6] I. Chajda and R. Halaˇs, Algebraic properties of pre-logics, Math. Slovaca 52 (2002) 157-175.

[7] I. Chajda and R. Halaˇs, Distributive implication groupoids, CEJM 5 (2007) 484-492. doi: 10.2478/s11566-007-0021-5

[8] C.C. Chang, Algebraic analysis of many valued logics, Trans. Amer. Math. Soc. 88 (1958) 467-499. doi: 10.1090/s0002-9947-1958-0094302-9

[9] W.Y. Chen and J.S. Oliveira, Implication algebras and the metropolis rota axioms for cubic lattices, J. Algebra 171 (1995) 383-396. doi: 10.1006/jabr.1995.1017

[10] A. Diego, Sur les alg‘ebres de Hilbert, Collection de Logique Math‘ematique, Serie A 21 (Gauthier-Villars, Paris, 1966).

[11] W. Dudek, On ideals in Hilbert algebras, Acta Univ. Palack. Olom. Fac. Rer. Nat. Mathematica 38 (1999) 31-34.

[12] R. Halas, Remarks on commutative Hilbert algebras, Math. Bohemica 4 (2002) 525-529.

[13] H.S. Kim and Y.H. Kim, On BE-algebras, Sci. Math. Jpn. 66 1 (2007) 113-116.

[14] K.H. Kim and Y.H. Yon, Dual BCK-algebra and MV -algebra, On algebras with a generalized implication, Sci. Math. Jpn. (2007) 393-399.

[15] K.J. Lee, Y.B. Jun and Y.H. Kim, Weak forms of subtraction algebras, Bull. Korean Math. Soc. 45 (2008) 437-444. doi: 10.4134/BKMS.2008.45.3.437

[16] B.L. Meng, CI-algebras, Sci. Math. Jpn. 71 (2010) 695-701.

[17] A. Rezaei and A. Borumand Saeid, Some results in BE-algebras, An. Univ. Oradea, Fasc. Mat. Tom XIX. (2012) 33-44.

[18] A. Rezaei and A. Borumand Saeid, Commutative ideals in BE-algebras, Kyungpook Math. J. 52 (2012) 483-494. doi: 10.5666/KMJ.2012.52.4.483

[19] A. Rezaei, A. Borumand Saeid and R.A. Borzooei, Relation between Hilbert algebras and BE-algebras, Appl. Math. 8 (2013) 573-584.

[20] A. Rezaei and A. Borumand Saeid, Relation between dual S-algebras and BE- algebras, LE Matematiche. Vol. LXX (2015) Fasc. I, pp. 71-79.

[21] A. Walendziak, On commutative BE-algebras, Sci. Math. Jpn. 69 (2008) 585-588.

[22] Y.H. Yon and E.A. Choi, Heyting algebra and t-algebra, Bulletin of the Chungcheong Mathematical Society 11 (1998) 13-26.

[23] Y.H. Yon and K.H. Kim, On algebras with a generalized implication, Math. Slovaca 63 (2013) 947-958. doi: 10.2478/s12175-013-01476-x

[24] B. Zelinka, Subtraction semigroup, Math. Bohemica 120 (1995) 445-447.