Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2018_38_1_a2, author = {Rezaei, Akbar and Saeid, Arsham Borumand}, title = {Relation {Between} {BE-Algebras} and {g-Hilbert} {Algebras}}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {33--45}, publisher = {mathdoc}, volume = {38}, number = {1}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2018_38_1_a2/} }
TY - JOUR AU - Rezaei, Akbar AU - Saeid, Arsham Borumand TI - Relation Between BE-Algebras and g-Hilbert Algebras JO - Discussiones Mathematicae. General Algebra and Applications PY - 2018 SP - 33 EP - 45 VL - 38 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2018_38_1_a2/ LA - en ID - DMGAA_2018_38_1_a2 ER -
%0 Journal Article %A Rezaei, Akbar %A Saeid, Arsham Borumand %T Relation Between BE-Algebras and g-Hilbert Algebras %J Discussiones Mathematicae. General Algebra and Applications %D 2018 %P 33-45 %V 38 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGAA_2018_38_1_a2/ %G en %F DMGAA_2018_38_1_a2
Rezaei, Akbar; Saeid, Arsham Borumand. Relation Between BE-Algebras and g-Hilbert Algebras. Discussiones Mathematicae. General Algebra and Applications, Tome 38 (2018) no. 1, pp. 33-45. http://geodesic.mathdoc.fr/item/DMGAA_2018_38_1_a2/
[1] J.C. Abbott, Semi Boolean algebra, Matem. Vestnik 4 (1967) 177-198.
[2] A. Borumand Saeid, CI-algebra is equivalent to dual Q-algebra, J. Egypt. Math. Soc. 21 (2013) 1-2. doi: 10.1016/j.joems.2012.08.021
[3] R.A. Borzooei and J. Shohani, On generalized Hilbert algebras, Italian Journal of pure and Applied Mathematics 20 (2012) 71-86.
[4] R.A. Borzooei, A. Borumand Saeid, R. Ameri and A. Rezaei, Involutory BE- algebras, J. Math. Appl. 37 (2014) 13-26.
[5] J. Cirulis, Subtraction-like operations in nearsemilattices, Demonstratio Math. 43 (2010) 725-738. doi: 10.1515/dema-2013-0267
[6] I. Chajda and R. Halaˇs, Algebraic properties of pre-logics, Math. Slovaca 52 (2002) 157-175.
[7] I. Chajda and R. Halaˇs, Distributive implication groupoids, CEJM 5 (2007) 484-492. doi: 10.2478/s11566-007-0021-5
[8] C.C. Chang, Algebraic analysis of many valued logics, Trans. Amer. Math. Soc. 88 (1958) 467-499. doi: 10.1090/s0002-9947-1958-0094302-9
[9] W.Y. Chen and J.S. Oliveira, Implication algebras and the metropolis rota axioms for cubic lattices, J. Algebra 171 (1995) 383-396. doi: 10.1006/jabr.1995.1017
[10] A. Diego, Sur les alg‘ebres de Hilbert, Collection de Logique Math‘ematique, Serie A 21 (Gauthier-Villars, Paris, 1966).
[11] W. Dudek, On ideals in Hilbert algebras, Acta Univ. Palack. Olom. Fac. Rer. Nat. Mathematica 38 (1999) 31-34.
[12] R. Halas, Remarks on commutative Hilbert algebras, Math. Bohemica 4 (2002) 525-529.
[13] H.S. Kim and Y.H. Kim, On BE-algebras, Sci. Math. Jpn. 66 1 (2007) 113-116.
[14] K.H. Kim and Y.H. Yon, Dual BCK-algebra and MV -algebra, On algebras with a generalized implication, Sci. Math. Jpn. (2007) 393-399.
[15] K.J. Lee, Y.B. Jun and Y.H. Kim, Weak forms of subtraction algebras, Bull. Korean Math. Soc. 45 (2008) 437-444. doi: 10.4134/BKMS.2008.45.3.437
[16] B.L. Meng, CI-algebras, Sci. Math. Jpn. 71 (2010) 695-701.
[17] A. Rezaei and A. Borumand Saeid, Some results in BE-algebras, An. Univ. Oradea, Fasc. Mat. Tom XIX. (2012) 33-44.
[18] A. Rezaei and A. Borumand Saeid, Commutative ideals in BE-algebras, Kyungpook Math. J. 52 (2012) 483-494. doi: 10.5666/KMJ.2012.52.4.483
[19] A. Rezaei, A. Borumand Saeid and R.A. Borzooei, Relation between Hilbert algebras and BE-algebras, Appl. Math. 8 (2013) 573-584.
[20] A. Rezaei and A. Borumand Saeid, Relation between dual S-algebras and BE- algebras, LE Matematiche. Vol. LXX (2015) Fasc. I, pp. 71-79.
[21] A. Walendziak, On commutative BE-algebras, Sci. Math. Jpn. 69 (2008) 585-588.
[22] Y.H. Yon and E.A. Choi, Heyting algebra and t-algebra, Bulletin of the Chungcheong Mathematical Society 11 (1998) 13-26.
[23] Y.H. Yon and K.H. Kim, On algebras with a generalized implication, Math. Slovaca 63 (2013) 947-958. doi: 10.2478/s12175-013-01476-x
[24] B. Zelinka, Subtraction semigroup, Math. Bohemica 120 (1995) 445-447.