A note on additive groups of some specific torsion-free rings of rank three and mixed associative rings
Discussiones Mathematicae. General Algebra and Applications, Tome 37 (2017) no. 2, pp. 223-232.

Voir la notice de l'article provenant de la source Library of Science

It is studied how rank two pure subgroups of a torsion-free Abelian group of rank three influences its structure and type set. In particular, the criterion for such a subgroup B to be a direct summand of a torsion-free Abelian group of rank three with the finite type set containing the greatest element which does not belong to the type set of B, is presented. Some results for nil groups and the square subgroup of a decomposable torsion-free Abelian group are also achieved. Moreover, new results for mixed Abelian groups supporting only associative rings are obtained. In particular, the first example of an Abelian group supporting only associative rings but not only commutative rings is given.
Keywords: rank, type, square subgroup, additive groups of rings
@article{DMGAA_2017_37_2_a8,
     author = {Najafizadeh, Alireza and Woronowicz, Mateusz},
     title = {A note on additive groups of some specific torsion-free rings of rank three and mixed associative rings},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {223--232},
     publisher = {mathdoc},
     volume = {37},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2017_37_2_a8/}
}
TY  - JOUR
AU  - Najafizadeh, Alireza
AU  - Woronowicz, Mateusz
TI  - A note on additive groups of some specific torsion-free rings of rank three and mixed associative rings
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2017
SP  - 223
EP  - 232
VL  - 37
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2017_37_2_a8/
LA  - en
ID  - DMGAA_2017_37_2_a8
ER  - 
%0 Journal Article
%A Najafizadeh, Alireza
%A Woronowicz, Mateusz
%T A note on additive groups of some specific torsion-free rings of rank three and mixed associative rings
%J Discussiones Mathematicae. General Algebra and Applications
%D 2017
%P 223-232
%V 37
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2017_37_2_a8/
%G en
%F DMGAA_2017_37_2_a8
Najafizadeh, Alireza; Woronowicz, Mateusz. A note on additive groups of some specific torsion-free rings of rank three and mixed associative rings. Discussiones Mathematicae. General Algebra and Applications, Tome 37 (2017) no. 2, pp. 223-232. http://geodesic.mathdoc.fr/item/DMGAA_2017_37_2_a8/

[1] A.M. Aghdam, On the strong nilstufe of rank two Abelian groups, Acta. Sci. Math. (Szeged) 49 (1985) 53-61.

[2] A.M. Aghdam, Square subgroup of an Abelian group, Acta. Sci. Math. 51 (1987) 343-348.

[3] A.M. Aghdam, Rings on indecomposable torsion free groups of rank two, Int. Math. Forum 1 (2006) 141-146.

[4] A.M. Aghdam and A. Najafizadeh, On the indecomposable torsion-free abelian groups of rank two, Rocky Mountain J. Math. 42 (2012) 425-438. doi: 10.1216/RMJ-2012-42-2-425

[5] R.R. Andruszkiewicz, M. Woronowicz, Some new results for the square subgroup of an Abelian group, Comm. Algebra 44 (2016) 2351-2361. doi: 10.1080/00927872.2015.1044107

[6] R.R. Andruszkiewicz, M. Woronowicz, A torsion-free abelian group exists whose quotient group modulo the square subgroup is not a nil-group, Bull. Aust. Math. Soc. 94 (2016) 449-456. doi: 10.1017/S0004972716000435

[7] R.R. Andruszkiewicz, M. Woronowicz, On additive groups of associative and commutative rings, Quaest. Math. 40 (2017) 527-537. doi: 10.2989/16073606.2017.1302019

[8] R.R. Andruszkiewicz, M. Woronowicz, On the square subgroup of a mixed SI-group, Proc. Edinburgh Math. Soc. (2017), to appear.

[9] R. Baer, Abelian groups without elements of finite order, Duke Math. J. 3 (1937) 68-122. doi: 10.1215/S0012-7094-37-00308-9

[10] R.A. Beaumont, H.S. Zuckerman, A characterization of the subgroups of the additive rationals, Pacific J. Math. 1 (1951) 169-177.

[11] R.A. Beaumont and R. J. Wisner, Rings with additive group which is a torsion-free group of rank two, Acta. Sci. Math. (Szeged) 20 (1959) 105-116.

[12] S. Feigelstock, On the tensor product of exact sequences of modules over a Dedekind ring, Archiv der Math. 25 (1974) 598-601.

[13] S. Feigelstock, On the type set of groups and nilpotence, Comment. Math. Univ. St. Pauli 25 (1976) 159-165.

[14] S. Feigelstock, Additive groups of rings. Vol. 1 (Pitman Advanced Publishing Program, Boston, 1983).

[15] S. Feigelstock, Additive groups of rings. Vol. 2 (Research Notes in Mathematics 169, Longman, London, 1988).

[16] S. Feigelstock, Additive groups of commutative rings, Quest. Math. 23 (2000) 241-245. doi: 10.2989/16073600009485973

[17] L. Fuchs, Infinite Abelian groups. Vol. 2 (Academic Press, New York, 1973).

[18] F. Hasani, F. Karimi, A. Najafizadeh and M.Y. Sadeghi, On the square subgroups of decomposable torsion-free abelian groups of rank three, Adv. Pure Appl. Math. 7 (2016) 259-265. doi: 10.1515/apam-2016-0018

[19] F. Karimi, H. Mohtadifar, On the rings on torsion-free groups, Mat. Vesnik 65 (2013) 326-333.

[20] J.E. Koehler, The type set of a torsion-free group of finite rank, Illinois J. Math. 1 (1965) 66-86.

[21] R. Ree and R.J. Wisner, A note on torsion-free nil groups, Proc. Amer. Math. Soc. 7 (1956) 6-8.

[22] A.E. Stratton, The type set of torsion-free rings of finite rank, Comment. Math. Univ. Sancti Pauli 27 (1978) 199-211.

[23] A.E. Stratton and M.C. Webb, Abelian groups nil modulo a subgroup need not have nil quotient group, Publ. Math. Debrecen 27 (1980) 127-130.

[24] S. Thomas, The classification problem for torsion-free abelian groups of finite rank, J. Amer. Math. Soc. 16 (2003) 233-258.

[25] M. Woronowicz, A note on additive groups of some specific associative rings, Ann. Math. Sil. 30 (2016) 219-229. doi: 10.1515/amsil-2015-0013

[26] M. Woronowicz, A note on the square subgroups of decomposable torsion-free abelian groups of rank three, Ann. Math. Sil (2017), to appear.