On Γ-semiring with identity
Discussiones Mathematicae. General Algebra and Applications, Tome 37 (2017) no. 2, pp. 189-207.

Voir la notice de l'article provenant de la source Library of Science

In this paper we study the properties of structures of the semigroup (M,+) and the Γ-semigroup M of Γ-semiring M and regular Γ-semiring M satisfying the identity a + aαb = a or aαb + a = a or a + aαb + b = a or a + 1 = 1, for all a ∈ M, α ∈ Γ. We also study the properties of Γ-semiring with unity 1 which is also an additive identity.
Keywords: Γ-semigroup, Γ-semiring, regular Γ-semiring
@article{DMGAA_2017_37_2_a6,
     author = {Marapureddy, Murali Krishna Rao},
     title = {On {\ensuremath{\Gamma}-semiring} with identity},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {189--207},
     publisher = {mathdoc},
     volume = {37},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2017_37_2_a6/}
}
TY  - JOUR
AU  - Marapureddy, Murali Krishna Rao
TI  - On Γ-semiring with identity
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2017
SP  - 189
EP  - 207
VL  - 37
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2017_37_2_a6/
LA  - en
ID  - DMGAA_2017_37_2_a6
ER  - 
%0 Journal Article
%A Marapureddy, Murali Krishna Rao
%T On Γ-semiring with identity
%J Discussiones Mathematicae. General Algebra and Applications
%D 2017
%P 189-207
%V 37
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2017_37_2_a6/
%G en
%F DMGAA_2017_37_2_a6
Marapureddy, Murali Krishna Rao. On Γ-semiring with identity. Discussiones Mathematicae. General Algebra and Applications, Tome 37 (2017) no. 2, pp. 189-207. http://geodesic.mathdoc.fr/item/DMGAA_2017_37_2_a6/

[1] T.K. Dutta and S. Kar, On regular ternary semirings, Advances in Algebra, Proceedings of the ICM Satellite Conference in Algebra and Related Topics, World Scientific, (2003) 343-355.

[2] H. Lehmer, A ternary analogue of abelian groups, American J. Math. 59 (1932) 329-338. doi: 10.2307/2370997

[3] W.G. Lister, Ternary rings, Tran. Amer. Math. Soc. 154 (1971) 37-55. doi: 10.2307/1995425

[4] J. Hanumanthachari and K. Venuraju, The additive semigroup structure of semiring, Math. Seminar Note 11 (1983) 381-386.

[5] M.M.K. Rao, Γ-semirings-I, Southeast Asian Bull. Math. 19 (1995) 49-54.

[6] M.M.K. Rao, Γ-semirings-II, Southeast Asian Bull. Math. 21 (1997) 281-287.

[7] M.M.K. Rao, The Jacobson radical of Γ-semiring, Southeast Asian Bull. Math. 23 (1999) 127-134.

[8] M.M.K. Rao and B. Venkateswarlu, Regular Γ-incline and field Γ-semiring, Novi Sad J. Math. 45 (2015) 155-171. emis.ams.org/journals/NSJOM/Papers/45-2 /NSJOM-45-2-155-171.pdf

[9] N. Nobusawa, On a generalization of the ring theory Osaka, J. Math. 1 (1964) 81-89. ir.library.osaka-u.ac.jp/dspace/bitstream/11094/12354/1/ojm 01-01-08.pdf

[10] M. Satyanarayana, On the additive semigroup of ordered semirings, Semigroup Forum 31 (1985) 193-199. doi: 10.1007/BF02572648

[11] M.K. Sen, On Γ-semigroup, Proc. of International Conference of Algebra and Its Application, Decker Publicaiton (New York, 1981) 301-308.

[12] H.S. Vandiver, Note on a simple type of algebra in which the cancellation law of addition does not hold, Bull. Amer. Math. 40 (1934) 914-920. doi: 10.1090/s0002-9904-1934-06003-8

[13] T. Vasanthi and N. Sulochana, Semiring satisfying the identity, Int. J.Math. Archive 3 (2012) 3393-3399.

[14] T. Vasanthi and C. Venkata Lakshmi, Properties of semirings, Int. J. Math. Archive 4 (2013) 222-227.