Generalized derivations with left annihilator conditions in prime and semiprime rings
Discussiones Mathematicae. General Algebra and Applications, Tome 37 (2017) no. 2, pp. 161-175.

Voir la notice de l'article provenant de la source Library of Science

Let R be a prime ring with its Utumi ring of quotients U, C = Z(U) be the extended centroid of R, H and G two generalized derivations of R, L a noncentral Lie ideal of R, I a nonzero ideal of R. The left annihilator of S ⊆ R is denoted by lR(S) and defined by lR(S) = x ∈ R| xS = 0. Suppose that S = H(un)un +unG(un) | u ∈ L and T = H(xn)xn +xnG(xn) | x ∈ I, where n ≥ 1 is a fixed integer. In the paper, we investigate the cases when the sets lR(S) and lR(T) are nonzero.
Keywords: prime ring, derivation, Lie ideal, generalized derivation, Utumi quotient ring, extended centroid
@article{DMGAA_2017_37_2_a4,
     author = {Dhara, Basudeb},
     title = {Generalized derivations with left annihilator conditions in prime and semiprime rings},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {161--175},
     publisher = {mathdoc},
     volume = {37},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2017_37_2_a4/}
}
TY  - JOUR
AU  - Dhara, Basudeb
TI  - Generalized derivations with left annihilator conditions in prime and semiprime rings
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2017
SP  - 161
EP  - 175
VL  - 37
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2017_37_2_a4/
LA  - en
ID  - DMGAA_2017_37_2_a4
ER  - 
%0 Journal Article
%A Dhara, Basudeb
%T Generalized derivations with left annihilator conditions in prime and semiprime rings
%J Discussiones Mathematicae. General Algebra and Applications
%D 2017
%P 161-175
%V 37
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2017_37_2_a4/
%G en
%F DMGAA_2017_37_2_a4
Dhara, Basudeb. Generalized derivations with left annihilator conditions in prime and semiprime rings. Discussiones Mathematicae. General Algebra and Applications, Tome 37 (2017) no. 2, pp. 161-175. http://geodesic.mathdoc.fr/item/DMGAA_2017_37_2_a4/

[1] K.I. Beidar, W.S. Martindale III and A.V. Mikhalev Rings with generalized identities, Pure and Applied Math., 196 (Marcel Dekker, New York, 1996).

[2] J. Bergen, I.N. Herstein and J.W. Kerr, Lie ideals and derivations of prime rings, J. Algebra 71 (1981) 259-267. doi: 10.1016/0021-8693(81)90120-4

[3] M. Brešar, Centralizing mappings and derivations in prime rings, J. Algebra 156 (1993) 385-394. doi: 10.1006/jabr.1993.1080

[4] L. Carini, V. De Filippis and B. Dhara, Annihilators on co-commutators with generalized derivations on Lie ideals, Publ. Math. Debrecen 76 (2010) 395-409.

[5] C.L. Chuang, GPIs having coefficients in Utumi quotient rings, Proc. Amer. Math. Soc. 103 (1988) 723-728. doi: 10.1090/S0002-9939-1988-0947646-4

[6] B. Dhara, S. Kar and K.G. Pradhan, An Engel condition of generalized derivations with annihilator on Lie ideal in prime rings, Matematicki Vesnik 68 (2016) 164-174.

[7] B. Dhara, V. De Filippis and G. Scudo, Power values of generalized derivations with annihilator conditions in prime rings, Mediterr. J. Math. 10 (2013) 123-135. doi: 10.1007/s00009-012-0185-5

[8] B. Dhara, Power values of derivations with annihilator conditions on Lie ideals in prime rings, Comm. Algebra 37 (2009) 2159-2167. doi: 10.1080/00927870802226213

[9] T.S. Erickson,W.S. Martindale III and J.M. Osborn, Prime nonassociative algebras, Pacific J. Math. 60 (1975) 49-63. doi: 10.2140/pjm.1975.60.49

[10] N. Jacobson, Structure of Rings, Amer. Math. Soc. Colloq. Pub. 37, Amer. Math. Soc. (Providence, RI, 1964).

[11] V.K. Kharchenko, Differential identity of prime rings, Algebra and Logic. 17 (1978) 155-168. doi: 10.1007/BF01670115

[12] C. Lanski, Differential identities, Lie ideals, and Posner’s theorems, Pacific J. Math. 134 (1988) 275-297. doi: 10.2140/pjm.1988.134.275

[13] C. Lanski and S. Montgomery, Lie structure of prime rings of characteristic 2, Pacific J. Math. 42 (1972) 117-136. doi: 10.2140/pjm.1972.42.117

[14] T.K. Lee and Y. Zhou, An identity with generalized derivations, J. Algebra Appl. 8 (2009) 307-317. doi: 10.1142/S021949880900331X

[15] T.K. Lee, Generalized derivations of left faithful rings, Comm. Algebra 27 (1999) 4057-4073. doi: 10.1080/00927879908826682

[16] T.K. Lee, Semiprime rings with differential identities, Bull. Inst. Math. Acad. Sinica 20 (1992) 27-38.

[17] P.H. Lee, Lie ideals of prime rings with derivations, Bull. Inst. Math. Acad. Sinica 11 (1983) 75-80.

[18] P.H. Lee and T.L. Wong, Derivations cocentralizing Lie ideals, Bull. Inst. Math. Acad. Sinica 23 (1995) 1-5.

[19] W.S. Martindale III, Prime rings satisfying a generalized polynomial identity, J. Algebra 12 (1969) 576-584. doi: 10.1016/0021-8693(69)90029-5

[20] E.C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957) 1093-1100. doi: 10.1090/S0002-9939-1957-0095863-0

[21] F. Rania, Generalized derivations and annihilator conditions in prime rings, Inter. J. Algebra 2 (2008) 963-969.

[22] J. Vukman, Identities with derivations on rings and Banach algebras, Glasnik Mathematicki 40/2 (2005) 189-199. doi: 10.3336/gm.40.2.01

[23] F. Wei and Z. Xiao, Generalized derivations on (semi-)prime rings and noncommutative Banach algebras, Rend. Sem. Mat. Univ. Padova. 122 (2009) 171-190.