Left zeroid and right zeroid elements of Γ-semirings
Discussiones Mathematicae. General Algebra and Applications, Tome 37 (2017) no. 2, pp. 127-136.

Voir la notice de l'article provenant de la source Library of Science

In this paper we introduce the notion of a left zeroid and a right zeroid of Γ-semirings. We prove that, a left zeroid of a simple Γ-semiring M is regular if and only if M is a regular Γ-semiring.
Keywords: left zeroid, right zeroid, idempotent, Γ-semiring, division Γ-semiring
@article{DMGAA_2017_37_2_a1,
     author = {Marapureddy, Murali Krishna Rao and Kumar, K.R.},
     title = {Left zeroid and right zeroid elements of {\ensuremath{\Gamma}-semirings}},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {127--136},
     publisher = {mathdoc},
     volume = {37},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2017_37_2_a1/}
}
TY  - JOUR
AU  - Marapureddy, Murali Krishna Rao
AU  - Kumar, K.R.
TI  - Left zeroid and right zeroid elements of Γ-semirings
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2017
SP  - 127
EP  - 136
VL  - 37
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2017_37_2_a1/
LA  - en
ID  - DMGAA_2017_37_2_a1
ER  - 
%0 Journal Article
%A Marapureddy, Murali Krishna Rao
%A Kumar, K.R.
%T Left zeroid and right zeroid elements of Γ-semirings
%J Discussiones Mathematicae. General Algebra and Applications
%D 2017
%P 127-136
%V 37
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2017_37_2_a1/
%G en
%F DMGAA_2017_37_2_a1
Marapureddy, Murali Krishna Rao; Kumar, K.R. Left zeroid and right zeroid elements of Γ-semirings. Discussiones Mathematicae. General Algebra and Applications, Tome 37 (2017) no. 2, pp. 127-136. http://geodesic.mathdoc.fr/item/DMGAA_2017_37_2_a1/

[1] P.J. Allen, A fundamental theorem of homomorphism for semirings, Proc. Amer. Math. Soc. 21 (1969) 412-416. doi: 10.1090/S0002-9939-1969-0237575-4

[2] S. Bourne and H. Zassenhaus, On the semiradical of a semiring, Proceedings N.A of S of USA 44 (1958) 907-914.

[3] A.H. Clifford and D.D. Miller, Semigroups having zeroid elements, Amer. J. Math. 70 (1948) 117-125. doi: 10.1090/S0002-9904-1955-09895-1

[4] D.F. Dawson, Semigroups having left or right zeroid elements, Bolyai. Institute University of Szeged (1965) 93-96.

[5] H. Lehmer, A ternary analogue of abelian groups, Amer. J. Math. 59 (1932) 329-338. doi: 10.2307/2370997

[6] W.G. Lister, Ternary rings, Trans. Amer. Math. Soc. 154 (1971) 37-55. doi: 10.2307/1995425

[7] M. Murali Krishna Rao, Γ-semirings-I, Southeast Asian Bulletin of Mathematics 19 (1995) 49-54.

[8] M. Murali Krishna Rao, Γ-semirings-II, Southeast Asian Bulletin of Mathematics 21 (1997) 281-287.

[9] M. Murali Krishna Rao, The Jacobson radical of Γ-semiring, Southeast Asian Bulletin of Mathematics 23 (1999) 127-134.

[10] M. Murali Krishna Rao and B. Venkateswarlu, Regular Γ-semiring and field Γ-semiring, Novi Sad J. Math. 45 (2015) 155-171.

[11] M.K. Sen, On Γ-semigroup, Proc. of International Conference of Algebra and its Application (Decker Publicaiton, New York, 1981) 301-308.

[12] V. Neumann, On regular rings, Proc. Nat. Acad. Sci. 22 (1936) 707-713. doi: org/10.1073/pnas.22.12.707

[13] N. Nobusawa, On a generalization of the ring theory, Osaka J. Math. 1 (1964) 81-89. ir.library.osaka-u.ac.jp/dspace/bitstream/11094/12354/1/ojm 01-01-08.pdf

[14] H.S. Vandiver, Note on a simple type of algebra in which the cancellation law of addition does not hold, Bull. Amer. Math. 40 (1934) 914-921. doi: 10.1090/s0002-9904-1934-06003-8