Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2017_37_2_a1, author = {Marapureddy, Murali Krishna Rao and Kumar, K.R.}, title = {Left zeroid and right zeroid elements of {\ensuremath{\Gamma}-semirings}}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {127--136}, publisher = {mathdoc}, volume = {37}, number = {2}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2017_37_2_a1/} }
TY - JOUR AU - Marapureddy, Murali Krishna Rao AU - Kumar, K.R. TI - Left zeroid and right zeroid elements of Γ-semirings JO - Discussiones Mathematicae. General Algebra and Applications PY - 2017 SP - 127 EP - 136 VL - 37 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2017_37_2_a1/ LA - en ID - DMGAA_2017_37_2_a1 ER -
%0 Journal Article %A Marapureddy, Murali Krishna Rao %A Kumar, K.R. %T Left zeroid and right zeroid elements of Γ-semirings %J Discussiones Mathematicae. General Algebra and Applications %D 2017 %P 127-136 %V 37 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGAA_2017_37_2_a1/ %G en %F DMGAA_2017_37_2_a1
Marapureddy, Murali Krishna Rao; Kumar, K.R. Left zeroid and right zeroid elements of Γ-semirings. Discussiones Mathematicae. General Algebra and Applications, Tome 37 (2017) no. 2, pp. 127-136. http://geodesic.mathdoc.fr/item/DMGAA_2017_37_2_a1/
[1] P.J. Allen, A fundamental theorem of homomorphism for semirings, Proc. Amer. Math. Soc. 21 (1969) 412-416. doi: 10.1090/S0002-9939-1969-0237575-4
[2] S. Bourne and H. Zassenhaus, On the semiradical of a semiring, Proceedings N.A of S of USA 44 (1958) 907-914.
[3] A.H. Clifford and D.D. Miller, Semigroups having zeroid elements, Amer. J. Math. 70 (1948) 117-125. doi: 10.1090/S0002-9904-1955-09895-1
[4] D.F. Dawson, Semigroups having left or right zeroid elements, Bolyai. Institute University of Szeged (1965) 93-96.
[5] H. Lehmer, A ternary analogue of abelian groups, Amer. J. Math. 59 (1932) 329-338. doi: 10.2307/2370997
[6] W.G. Lister, Ternary rings, Trans. Amer. Math. Soc. 154 (1971) 37-55. doi: 10.2307/1995425
[7] M. Murali Krishna Rao, Γ-semirings-I, Southeast Asian Bulletin of Mathematics 19 (1995) 49-54.
[8] M. Murali Krishna Rao, Γ-semirings-II, Southeast Asian Bulletin of Mathematics 21 (1997) 281-287.
[9] M. Murali Krishna Rao, The Jacobson radical of Γ-semiring, Southeast Asian Bulletin of Mathematics 23 (1999) 127-134.
[10] M. Murali Krishna Rao and B. Venkateswarlu, Regular Γ-semiring and field Γ-semiring, Novi Sad J. Math. 45 (2015) 155-171.
[11] M.K. Sen, On Γ-semigroup, Proc. of International Conference of Algebra and its Application (Decker Publicaiton, New York, 1981) 301-308.
[12] V. Neumann, On regular rings, Proc. Nat. Acad. Sci. 22 (1936) 707-713. doi: org/10.1073/pnas.22.12.707
[13] N. Nobusawa, On a generalization of the ring theory, Osaka J. Math. 1 (1964) 81-89. ir.library.osaka-u.ac.jp/dspace/bitstream/11094/12354/1/ojm 01-01-08.pdf
[14] H.S. Vandiver, Note on a simple type of algebra in which the cancellation law of addition does not hold, Bull. Amer. Math. 40 (1934) 914-921. doi: 10.1090/s0002-9904-1934-06003-8