Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2017_37_1_a7, author = {Kunama, Pornpimol and Leeratanavalee, Sorasak}, title = {All maximal completely regular submonoids of $Hyp_G(2)$}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {105--114}, publisher = {mathdoc}, volume = {37}, number = {1}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2017_37_1_a7/} }
TY - JOUR AU - Kunama, Pornpimol AU - Leeratanavalee, Sorasak TI - All maximal completely regular submonoids of $Hyp_G(2)$ JO - Discussiones Mathematicae. General Algebra and Applications PY - 2017 SP - 105 EP - 114 VL - 37 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2017_37_1_a7/ LA - en ID - DMGAA_2017_37_1_a7 ER -
%0 Journal Article %A Kunama, Pornpimol %A Leeratanavalee, Sorasak %T All maximal completely regular submonoids of $Hyp_G(2)$ %J Discussiones Mathematicae. General Algebra and Applications %D 2017 %P 105-114 %V 37 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGAA_2017_37_1_a7/ %G en %F DMGAA_2017_37_1_a7
Kunama, Pornpimol; Leeratanavalee, Sorasak. All maximal completely regular submonoids of $Hyp_G(2)$. Discussiones Mathematicae. General Algebra and Applications, Tome 37 (2017) no. 1, pp. 105-114. http://geodesic.mathdoc.fr/item/DMGAA_2017_37_1_a7/
[1] A. Boonmee and S. Leeratanavalee, All completely regular elements in HypG(n), Discuss. Math. Gen. Alg. and Appl. 33 (2013) 211–219. doi:10.7151/DMGAA.1203
[2] K. Denecke, D. Lau, R. Pöschel and D. Schweigert, Hyperidentities, hyperequational classes and clone congruences, Contributions to General Algebra 7 (Verlag Holder-Pichler-Tempsky, Wein, 1991) 97–118.
[3] W. Puninagool and S. Leeratanavalee, All regular elements in HypG(2), Kyungpook Math. J. 51 (2011) 139–143. doi:10.5666/KMJ.2011.51.2.139
[4] W. Puninagool and S. Leeratanavalee, The monoid of generalized hypersubstitutions of type τ = (n), Discuss. Math. Gen. Alg. and Appl. 30 (2010) 173–191.
[5] J.M. Howie, Fundamentals of Semigroup Theory (Academic Press, London, 1995).
[6] M. Petrich and N.R. Reilly, Completely Regular Semigroups (John Wiley and Sons, Inc., New York, 1999).
[7] S. Leeratanavalee and K. Denecke, Generalized Hypersubstitutions and Strongly Solid Varieties, General Algebra and Applications, Proc. of the ”59 th Workshop on General Algebra, ”15 th Conference for Young Algebraists Potsdam 2000” (Shaker Verlag, 2000) 135–145.