All maximal completely regular submonoids of $Hyp_G(2)$
Discussiones Mathematicae. General Algebra and Applications, Tome 37 (2017) no. 1, pp. 105-114.

Voir la notice de l'article provenant de la source Library of Science

In this paper we consider mappings σ which map the binary operation symbol f to the term σ (f) which do not necessarily preserve the arity. These mapping are called generalized hypersubstitutions of type τ = (2) and we denote the set of all these generalized hypersubstitutions of type τ = (2) by HypG(2). The set HypG(2) together with a binary operation defined on this set and the identity generalized hypersubstitution which maps f to the term f(x1, x2) forms a monoid. In this paper, we determine all maximal completely regular submonoids of this monoid.
Keywords: generalized hypersubstitution, regular element, completely regular
@article{DMGAA_2017_37_1_a7,
     author = {Kunama, Pornpimol and Leeratanavalee, Sorasak},
     title = {All maximal completely regular submonoids of $Hyp_G(2)$},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {105--114},
     publisher = {mathdoc},
     volume = {37},
     number = {1},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2017_37_1_a7/}
}
TY  - JOUR
AU  - Kunama, Pornpimol
AU  - Leeratanavalee, Sorasak
TI  - All maximal completely regular submonoids of $Hyp_G(2)$
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2017
SP  - 105
EP  - 114
VL  - 37
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2017_37_1_a7/
LA  - en
ID  - DMGAA_2017_37_1_a7
ER  - 
%0 Journal Article
%A Kunama, Pornpimol
%A Leeratanavalee, Sorasak
%T All maximal completely regular submonoids of $Hyp_G(2)$
%J Discussiones Mathematicae. General Algebra and Applications
%D 2017
%P 105-114
%V 37
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2017_37_1_a7/
%G en
%F DMGAA_2017_37_1_a7
Kunama, Pornpimol; Leeratanavalee, Sorasak. All maximal completely regular submonoids of $Hyp_G(2)$. Discussiones Mathematicae. General Algebra and Applications, Tome 37 (2017) no. 1, pp. 105-114. http://geodesic.mathdoc.fr/item/DMGAA_2017_37_1_a7/

[1] A. Boonmee and S. Leeratanavalee, All completely regular elements in HypG(n), Discuss. Math. Gen. Alg. and Appl. 33 (2013) 211–219. doi:10.7151/DMGAA.1203

[2] K. Denecke, D. Lau, R. Pöschel and D. Schweigert, Hyperidentities, hyperequational classes and clone congruences, Contributions to General Algebra 7 (Verlag Holder-Pichler-Tempsky, Wein, 1991) 97–118.

[3] W. Puninagool and S. Leeratanavalee, All regular elements in HypG(2), Kyungpook Math. J. 51 (2011) 139–143. doi:10.5666/KMJ.2011.51.2.139

[4] W. Puninagool and S. Leeratanavalee, The monoid of generalized hypersubstitutions of type τ = (n), Discuss. Math. Gen. Alg. and Appl. 30 (2010) 173–191.

[5] J.M. Howie, Fundamentals of Semigroup Theory (Academic Press, London, 1995).

[6] M. Petrich and N.R. Reilly, Completely Regular Semigroups (John Wiley and Sons, Inc., New York, 1999).

[7] S. Leeratanavalee and K. Denecke, Generalized Hypersubstitutions and Strongly Solid Varieties, General Algebra and Applications, Proc. of the ”59 th Workshop on General Algebra, ”15 th Conference for Young Algebraists Potsdam 2000” (Shaker Verlag, 2000) 135–145.