All maximal completely regular submonoids of $Hyp_G(2)$
Discussiones Mathematicae. General Algebra and Applications, Tome 37 (2017) no. 1, pp. 105-114

Voir la notice de l'article provenant de la source Library of Science

In this paper we consider mappings σ which map the binary operation symbol f to the term σ (f) which do not necessarily preserve the arity. These mapping are called generalized hypersubstitutions of type τ = (2) and we denote the set of all these generalized hypersubstitutions of type τ = (2) by HypG(2). The set HypG(2) together with a binary operation defined on this set and the identity generalized hypersubstitution which maps f to the term f(x1, x2) forms a monoid. In this paper, we determine all maximal completely regular submonoids of this monoid.
Keywords: generalized hypersubstitution, regular element, completely regular
@article{DMGAA_2017_37_1_a7,
     author = {Kunama, Pornpimol and Leeratanavalee, Sorasak},
     title = {All maximal completely regular submonoids of $Hyp_G(2)$},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {105--114},
     publisher = {mathdoc},
     volume = {37},
     number = {1},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2017_37_1_a7/}
}
TY  - JOUR
AU  - Kunama, Pornpimol
AU  - Leeratanavalee, Sorasak
TI  - All maximal completely regular submonoids of $Hyp_G(2)$
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2017
SP  - 105
EP  - 114
VL  - 37
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2017_37_1_a7/
LA  - en
ID  - DMGAA_2017_37_1_a7
ER  - 
%0 Journal Article
%A Kunama, Pornpimol
%A Leeratanavalee, Sorasak
%T All maximal completely regular submonoids of $Hyp_G(2)$
%J Discussiones Mathematicae. General Algebra and Applications
%D 2017
%P 105-114
%V 37
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2017_37_1_a7/
%G en
%F DMGAA_2017_37_1_a7
Kunama, Pornpimol; Leeratanavalee, Sorasak. All maximal completely regular submonoids of $Hyp_G(2)$. Discussiones Mathematicae. General Algebra and Applications, Tome 37 (2017) no. 1, pp. 105-114. http://geodesic.mathdoc.fr/item/DMGAA_2017_37_1_a7/