Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2017_37_1_a6, author = {Choudhury, Projesh Nath and Sivakumar, K.C.}, title = {Trace inequalities for positive semidefinite matrices}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {93--104}, publisher = {mathdoc}, volume = {37}, number = {1}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2017_37_1_a6/} }
TY - JOUR AU - Choudhury, Projesh Nath AU - Sivakumar, K.C. TI - Trace inequalities for positive semidefinite matrices JO - Discussiones Mathematicae. General Algebra and Applications PY - 2017 SP - 93 EP - 104 VL - 37 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2017_37_1_a6/ LA - en ID - DMGAA_2017_37_1_a6 ER -
%0 Journal Article %A Choudhury, Projesh Nath %A Sivakumar, K.C. %T Trace inequalities for positive semidefinite matrices %J Discussiones Mathematicae. General Algebra and Applications %D 2017 %P 93-104 %V 37 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGAA_2017_37_1_a6/ %G en %F DMGAA_2017_37_1_a6
Choudhury, Projesh Nath; Sivakumar, K.C. Trace inequalities for positive semidefinite matrices. Discussiones Mathematicae. General Algebra and Applications, Tome 37 (2017) no. 1, pp. 93-104. http://geodesic.mathdoc.fr/item/DMGAA_2017_37_1_a6/
[1] K.M. Abadir and J.R. Magnus, Matrix Algebra (Cambridge University Press, New York, USA, 2005).
[2] E.V. Belmega, M. Jungers and S. Lasaulce, A generalization of a trace inequality for positive definite matrices, Aust. J. Math. Anal. Appl. 7 (2010) no. 2 Art. 26, 5 pp.
[3] E.V. Belmega, S. Lasaulce and M. Debbah, A trace inequality for positive definite matrices, J. Inequal. Pure Appl. Math. 10 (2009) no. 1 Art. 5, 4 pp.
[4] A. Ben-Israel and T.N.E. Greville, Generalized Inverses: Theory and Applications (Springer-Verlag, New York, 2003). doi:10.1007/b97366
[5] S. Furuichi and M. Lin, Refinements of the trace inequality of Belmega, Lasaulce and Debbah, Aust. J. Math. Anal. Appl. 7 (2010) no. 2 Art. 23, 4 pp.
[6] J.B. Lasserre, A trace inequality for matrix product, IEEE Trans. Automat. Control 40 (1995) 1500–1501. doi:10.1109/9.402252
[7] C.K. Li and R. Mathias, Inequalities on singular values of block triangular matrices, SIAM J. Matrix Anal. Appl. 24 (2002) 126–131. doi:10.1137/S0895479801398517
[8] E. Telatar, Capacity of multi-antenna Gaussian channels, Eur. Trans. on Telecomm. 10 (1999) 585–595. doi:10.1002/ett.4460100604
[9] Z. Ulukök and R. Türkmen, On some matrix trace inequalities, J. Inequal. Appl. 2010 (Art.ID 201486) 8 pp. doi:10.1155/2010/201486
[10] H.J. Werner, On the matrix monotonicity of generalized inversion, Lin. Alg. Appl. 27 (1979) 141–145. doi:10.1016/0024-3795(79)90036-3
[11] Z.P. Yang and X.X Feng, A note on the trace inequality for products of Hermitian matrix power, J. Inequal. Pure Appl. Math. 3 (2002) no. 5 Article 78, 12 pp.
[12] F. Zhang, The Schur Complement and Its Applications (Springer, New York, 2005). doi:10.1007/b105056
[13] F. Zhang, Matrix Theory: Basic Results and Techniques (Springer, New York, 2011). doi:10.1007/978-1-4614-1099-7