Weak-hyperlattices derived from fuzzy congruences
Discussiones Mathematicae. General Algebra and Applications, Tome 37 (2017) no. 1, pp. 75-91.

Voir la notice de l'article provenant de la source Library of Science

In this paper we explore the connections between fuzzy congruence relations, fuzzy ideals and homomorphisms of hyperlattices. Indeed, we introduce the concept of fuzzy quotient set of hyperlattices as it was done in the case of rings [19]. We prove that a fuzzy congruence induces a fuzzy ideal of the fuzzy quotient hyperlattice. In particular, we establish necessary and sufficient conditions for a zero-fuzzy congruence class to be a fuzzy ideal of a hyperlattice.
Keywords: hyperlattice, ideal, prime ideal, fuzzy ideal, fuzzy prime ideal, fuzzy congruence relation
@article{DMGAA_2017_37_1_a5,
     author = {Koguep, Bl\'eriot Blaise Njionou and Lele, Celestin},
     title = {Weak-hyperlattices derived from fuzzy congruences},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {75--91},
     publisher = {mathdoc},
     volume = {37},
     number = {1},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2017_37_1_a5/}
}
TY  - JOUR
AU  - Koguep, Blériot Blaise Njionou
AU  - Lele, Celestin
TI  - Weak-hyperlattices derived from fuzzy congruences
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2017
SP  - 75
EP  - 91
VL  - 37
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2017_37_1_a5/
LA  - en
ID  - DMGAA_2017_37_1_a5
ER  - 
%0 Journal Article
%A Koguep, Blériot Blaise Njionou
%A Lele, Celestin
%T Weak-hyperlattices derived from fuzzy congruences
%J Discussiones Mathematicae. General Algebra and Applications
%D 2017
%P 75-91
%V 37
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2017_37_1_a5/
%G en
%F DMGAA_2017_37_1_a5
Koguep, Blériot Blaise Njionou; Lele, Celestin. Weak-hyperlattices derived from fuzzy congruences. Discussiones Mathematicae. General Algebra and Applications, Tome 37 (2017) no. 1, pp. 75-91. http://geodesic.mathdoc.fr/item/DMGAA_2017_37_1_a5/

[1] R. Ameri, M. Amiri-Bideshki, A.B. Saeid and S. Hoskova-Mayerova, Prime filters of hyperlattices, An. Şt. Univ. Ovidius Constanţa, Ser. Matematica 24 (2016) 15–26. doi:10.1515/auom-2016-0025

[2] M. Attallah, Completely Fuzzy Prime Ideals of distributive Lattices, The Journal of Fuzzy Mathematics 8 (2000) 151–156.

[3] M. Bakhshi and R.A. Borzooei, Lattice structure on fuzzy congruence relations of a hypergroupoid, Inform. Sci. 177 (2007) 3305–3313.

[4] R.A. Borzooei, M. Bakhshi and Y.B. Jun, Fuzzy congruence relations on hyper BCK-algebras, J. Fuzzy Math. 13 (2005) 627–636.

[5] I.P. Cabrera, P. Cordeo, G. Gutiérrez, J. Martinez and M. Ojeda-Aciego, Fuzzy congruence relations on nd-groupoids, Int. J. Comput. Math. 86 (2009) 1684–1695. doi:10.1080/00207160902721797

[6] I.P. Cabrera, P. Cordeo, G. Gutiérrez, J. Martinez and M. Ojeda-Aciego, Congruence relations on some hyperstructures, Annals of Mathematics and Artificial Intelligence 2009 (Accessible from http://sevein.matap.uma.es/~aciego/amai.pdf ).

[7] P. Corsini and V. Leoreanu, Application of Hyperstructure Theory (Kluwer Academic Publishers, Advances in Mathematics, Vol. 5, Boston, Dordrecht, London, 2003).

[8] B.A. Davey and H.A. Priestley, Introduction to Lattices and Order (Cambridge University Press, Second edition, Cambridge, 2002).

[9] J. Jakubik, On strong superlattices, Math. Slovaca 44 (1994) 131–138.

[10] B.B.N. Koguep, C. Lele and J.B. Nganou, Normal hyperlattices and pure ideals of hyperlattices, Asian-European J. Math. 9 (2016) 1650020 (14 pages). doi:10.1142/S1793557116500200

[11] B.B.N. Koguep, C. Nkuimi and C. Lele, On fuzzy ideals of hyperlattice, Int. J. Algebra 2 (2008) 739–750.

[12] M. Konstantinidou and J. Mittas, An introduction to the theory of Hyperlattices, Mathematica Balcanica 7 (1997) 187–193.

[13] F. Marty, Sur une généralisation de la notion de groupe, 8ième Congrès des Mathématiciens Scandinaves, Stockholm (1934) 45–49.

[14] V. Murali, Fuzzy equivalence relations, Fuzzy Sets and Systems 30 (1989) 155–163.

[15] A. Rahnamai-Barghi, The prime ideal theorem for distributive hyperlattices, Ital. J. Pure and Appl. Math. 10 (2001) 75–78.

[16] A. Rahnamai-Barghi, The prime ideal theorem and semiprime ideals in meethyperlattices, Ital. J. Pure and Appl. Math. 5 (1999) 53–60.

[17] S. Rasouli and B. Davvaz, Lattice derived from hyperlattices, Comm. in Algebra 38 (2010) 2720–2737.

[18] S. Rasouli and B. Davvaz, Construction and spectral topology on hyperlattice, Mediterr. J. Math. 7 (2010) 249–262.

[19] S. Yu-Qiang and Z. Cheng-Yi, Congruence on the semirings with reversible addition, Intern. J. Pure Appl. Math. 26 (2006) 155–163.

[20] U.M. Swamy and D. Viswanadha Raju, Fuzzy ideals and congruences of Lattices, Fuzzy sets and Systemes 95 (1998) 249–253.

[21] L.A. Zadeh, Fuzzy sets, Information and Control 8 (1965) 338–353.