Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2017_37_1_a5, author = {Koguep, Bl\'eriot Blaise Njionou and Lele, Celestin}, title = {Weak-hyperlattices derived from fuzzy congruences}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {75--91}, publisher = {mathdoc}, volume = {37}, number = {1}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2017_37_1_a5/} }
TY - JOUR AU - Koguep, Blériot Blaise Njionou AU - Lele, Celestin TI - Weak-hyperlattices derived from fuzzy congruences JO - Discussiones Mathematicae. General Algebra and Applications PY - 2017 SP - 75 EP - 91 VL - 37 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2017_37_1_a5/ LA - en ID - DMGAA_2017_37_1_a5 ER -
%0 Journal Article %A Koguep, Blériot Blaise Njionou %A Lele, Celestin %T Weak-hyperlattices derived from fuzzy congruences %J Discussiones Mathematicae. General Algebra and Applications %D 2017 %P 75-91 %V 37 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGAA_2017_37_1_a5/ %G en %F DMGAA_2017_37_1_a5
Koguep, Blériot Blaise Njionou; Lele, Celestin. Weak-hyperlattices derived from fuzzy congruences. Discussiones Mathematicae. General Algebra and Applications, Tome 37 (2017) no. 1, pp. 75-91. http://geodesic.mathdoc.fr/item/DMGAA_2017_37_1_a5/
[1] R. Ameri, M. Amiri-Bideshki, A.B. Saeid and S. Hoskova-Mayerova, Prime filters of hyperlattices, An. Şt. Univ. Ovidius Constanţa, Ser. Matematica 24 (2016) 15–26. doi:10.1515/auom-2016-0025
[2] M. Attallah, Completely Fuzzy Prime Ideals of distributive Lattices, The Journal of Fuzzy Mathematics 8 (2000) 151–156.
[3] M. Bakhshi and R.A. Borzooei, Lattice structure on fuzzy congruence relations of a hypergroupoid, Inform. Sci. 177 (2007) 3305–3313.
[4] R.A. Borzooei, M. Bakhshi and Y.B. Jun, Fuzzy congruence relations on hyper BCK-algebras, J. Fuzzy Math. 13 (2005) 627–636.
[5] I.P. Cabrera, P. Cordeo, G. Gutiérrez, J. Martinez and M. Ojeda-Aciego, Fuzzy congruence relations on nd-groupoids, Int. J. Comput. Math. 86 (2009) 1684–1695. doi:10.1080/00207160902721797
[6] I.P. Cabrera, P. Cordeo, G. Gutiérrez, J. Martinez and M. Ojeda-Aciego, Congruence relations on some hyperstructures, Annals of Mathematics and Artificial Intelligence 2009 (Accessible from http://sevein.matap.uma.es/~aciego/amai.pdf ).
[7] P. Corsini and V. Leoreanu, Application of Hyperstructure Theory (Kluwer Academic Publishers, Advances in Mathematics, Vol. 5, Boston, Dordrecht, London, 2003).
[8] B.A. Davey and H.A. Priestley, Introduction to Lattices and Order (Cambridge University Press, Second edition, Cambridge, 2002).
[9] J. Jakubik, On strong superlattices, Math. Slovaca 44 (1994) 131–138.
[10] B.B.N. Koguep, C. Lele and J.B. Nganou, Normal hyperlattices and pure ideals of hyperlattices, Asian-European J. Math. 9 (2016) 1650020 (14 pages). doi:10.1142/S1793557116500200
[11] B.B.N. Koguep, C. Nkuimi and C. Lele, On fuzzy ideals of hyperlattice, Int. J. Algebra 2 (2008) 739–750.
[12] M. Konstantinidou and J. Mittas, An introduction to the theory of Hyperlattices, Mathematica Balcanica 7 (1997) 187–193.
[13] F. Marty, Sur une généralisation de la notion de groupe, 8ième Congrès des Mathématiciens Scandinaves, Stockholm (1934) 45–49.
[14] V. Murali, Fuzzy equivalence relations, Fuzzy Sets and Systems 30 (1989) 155–163.
[15] A. Rahnamai-Barghi, The prime ideal theorem for distributive hyperlattices, Ital. J. Pure and Appl. Math. 10 (2001) 75–78.
[16] A. Rahnamai-Barghi, The prime ideal theorem and semiprime ideals in meethyperlattices, Ital. J. Pure and Appl. Math. 5 (1999) 53–60.
[17] S. Rasouli and B. Davvaz, Lattice derived from hyperlattices, Comm. in Algebra 38 (2010) 2720–2737.
[18] S. Rasouli and B. Davvaz, Construction and spectral topology on hyperlattice, Mediterr. J. Math. 7 (2010) 249–262.
[19] S. Yu-Qiang and Z. Cheng-Yi, Congruence on the semirings with reversible addition, Intern. J. Pure Appl. Math. 26 (2006) 155–163.
[20] U.M. Swamy and D. Viswanadha Raju, Fuzzy ideals and congruences of Lattices, Fuzzy sets and Systemes 95 (1998) 249–253.
[21] L.A. Zadeh, Fuzzy sets, Information and Control 8 (1965) 338–353.