Zero-divisor graphs of reduced Rickart *-rings
Discussiones Mathematicae. General Algebra and Applications, Tome 37 (2017) no. 1, pp. 31-43.

Voir la notice de l'article provenant de la source Library of Science

For a ring A with an involution *, the zero-divisor graph of A, Γ*(A), is the graph whose vertices are the nonzero left zero-divisors in A such that distinct vertices x and y are adjacent if and only if xy* = 0. In this paper, we study the zero-divisor graph of a Rickart *-ring having no nonzero nilpotent element. The distance, diameter, and cycles of Γ*(A) are characterized in terms of the collection of prime strict ideals of A. In fact, we prove that the clique number of Γ*(A) coincides with the cellularity of the hullkernel topological space Σ(A) of the set of prime strict ideals of A, where cellularity of the topological space is the smallest cardinal number m such that every family of pairwise disjoint non-empty open subsets of the space have cardinality at most m.
Keywords: reduced ring, Rickart *-ring, zero-divisor graph, prime strict ideals
@article{DMGAA_2017_37_1_a2,
     author = {Patil, A.A. and Waphare, B.N.},
     title = {Zero-divisor graphs of reduced {Rickart} *-rings},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {31--43},
     publisher = {mathdoc},
     volume = {37},
     number = {1},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2017_37_1_a2/}
}
TY  - JOUR
AU  - Patil, A.A.
AU  - Waphare, B.N.
TI  - Zero-divisor graphs of reduced Rickart *-rings
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2017
SP  - 31
EP  - 43
VL  - 37
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2017_37_1_a2/
LA  - en
ID  - DMGAA_2017_37_1_a2
ER  - 
%0 Journal Article
%A Patil, A.A.
%A Waphare, B.N.
%T Zero-divisor graphs of reduced Rickart *-rings
%J Discussiones Mathematicae. General Algebra and Applications
%D 2017
%P 31-43
%V 37
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2017_37_1_a2/
%G en
%F DMGAA_2017_37_1_a2
Patil, A.A.; Waphare, B.N. Zero-divisor graphs of reduced Rickart *-rings. Discussiones Mathematicae. General Algebra and Applications, Tome 37 (2017) no. 1, pp. 31-43. http://geodesic.mathdoc.fr/item/DMGAA_2017_37_1_a2/

[1] S. Akbari and A. Mohammadian, On the zero-divisor graph of a commutative ring, J. Algebra 274 (2004) 847–855. doi:10.1016/S0021-8693(03)00435-6

[2] D.F. Anderson, R. Levy and J. Shapirob, Zero-divisor graphs, von Neumann regular rings and Boolean algebras, J. Pure Appl. Alg. 180 (2003) 221–241. doi:10.1016/S0022-4049(02)00250-5

[3] D.F. Anderson and P.S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 (1999) 434–447. doi:10.1006/jabr.1998.7840

[4] I. Beck, Coloring of commutative rings, J. Algebra 116 (1988) 208–226. doi:10.1016/0021-8693(88)90202-5

[5] S.K. Berberian, Baer *-Rings (Springer-Verlag, Berlin and New York, 1972).

[6] D. Dolžan and P. Oblak, The zero divisor graphs of rings and semirings, Int. J. Algebra Comput. 22 1250033 (2012) 20pp. doi:10.1142/S0218196712500336

[7] F. DeMeyer, T. McKenzie and K. Schneider, The zero-divisor graph of a commutative semigroup, Semigroup Forum 65 (2002) 206–214. doi:10.1007/s002330010128

[8] F. DeMeyer and L. DeMeyer, Zero divisor graph of Semigroups, J. Algebra 283 (2005) 190–198. doi:10.1016/j.jalgebra.2004.08.028

[9] R. Halaš and M. Jukl, On Beck’s colouring of posets, Discrete Math. 309 (2009) 4584–4589. doi:10.1016/j.disc.2009.02.024

[10] R. Sen Gupta, M.K. Sen and S. Ghosh, A variation of zero-divisor graphs, Discuss. Math. Gen. Algebra Appl. 35 (2015) 159–176. doi:10.7151/dmgaa.1238

[11] K. Samei, The zero divisor graph of a reduced ring, J. Pure App. Alg. 209 (2007) 813–821. doi:10.1016/j.jpaa.2006.08.008.

[12] S.K. Nimbhorkar, Coloring of Rickart *-rings, Trends in Theory of Rings and Modules, S. Tariq Rizvi and S.M.A. Zaidi (Eds.) Anamya Publishers (New Delhi 2005), 91–95.

[13] S.K. Nimbhorkar, M.P. Wasadikar and L. DeMeyer, Coloring of semilattices, Ars Comb. 12 (2007) 97–104.

[14] Avinash Patil and B.N. Waphare, On the Zero-divisor graph of Rickart *- rings, Asian-Eur. J. Math. 10 (2017) 1750015 (17 pages). doi:10.1142/S1793557117500152

[15] Avinash Patil, B.N. Waphare, V.V. Joshi and H.Y. Paurali, Zero-divisor graphs of lower dismantlable lattices -I, Math. Slovaca 67 (2017) 1–12.

[16] Avinash Patil, B.N. Waphare and V.V. Joshi, Zero-divisor graphs of lower dismantlable lattices -II, to appear in Math. Slovaca.

[17] Avinash Patil and B.N. Waphare, The zero-divisor graph of a ring with involution, J. Algebra Appl. (to appear).

[18] S.P. Redmond, The zero-divisor graph of a non-commutative ring, Int. J. Commut. Rings 1 (2002) 203–211.

[19] N.K. Thakare and S.K. Nimbhorkar, Prime strict ideals in Rickart *-rings, Ind. J. Pure appl. Math. 22 (1991) 63–72.

[20] D.B. West, Introduction to Graph Theory, Second Edition (Prentice-Hall of India, New Delhi, 2002).