Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2017_37_1_a2, author = {Patil, A.A. and Waphare, B.N.}, title = {Zero-divisor graphs of reduced {Rickart} *-rings}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {31--43}, publisher = {mathdoc}, volume = {37}, number = {1}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2017_37_1_a2/} }
TY - JOUR AU - Patil, A.A. AU - Waphare, B.N. TI - Zero-divisor graphs of reduced Rickart *-rings JO - Discussiones Mathematicae. General Algebra and Applications PY - 2017 SP - 31 EP - 43 VL - 37 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2017_37_1_a2/ LA - en ID - DMGAA_2017_37_1_a2 ER -
Patil, A.A.; Waphare, B.N. Zero-divisor graphs of reduced Rickart *-rings. Discussiones Mathematicae. General Algebra and Applications, Tome 37 (2017) no. 1, pp. 31-43. http://geodesic.mathdoc.fr/item/DMGAA_2017_37_1_a2/
[1] S. Akbari and A. Mohammadian, On the zero-divisor graph of a commutative ring, J. Algebra 274 (2004) 847–855. doi:10.1016/S0021-8693(03)00435-6
[2] D.F. Anderson, R. Levy and J. Shapirob, Zero-divisor graphs, von Neumann regular rings and Boolean algebras, J. Pure Appl. Alg. 180 (2003) 221–241. doi:10.1016/S0022-4049(02)00250-5
[3] D.F. Anderson and P.S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 (1999) 434–447. doi:10.1006/jabr.1998.7840
[4] I. Beck, Coloring of commutative rings, J. Algebra 116 (1988) 208–226. doi:10.1016/0021-8693(88)90202-5
[5] S.K. Berberian, Baer *-Rings (Springer-Verlag, Berlin and New York, 1972).
[6] D. Dolžan and P. Oblak, The zero divisor graphs of rings and semirings, Int. J. Algebra Comput. 22 1250033 (2012) 20pp. doi:10.1142/S0218196712500336
[7] F. DeMeyer, T. McKenzie and K. Schneider, The zero-divisor graph of a commutative semigroup, Semigroup Forum 65 (2002) 206–214. doi:10.1007/s002330010128
[8] F. DeMeyer and L. DeMeyer, Zero divisor graph of Semigroups, J. Algebra 283 (2005) 190–198. doi:10.1016/j.jalgebra.2004.08.028
[9] R. Halaš and M. Jukl, On Beck’s colouring of posets, Discrete Math. 309 (2009) 4584–4589. doi:10.1016/j.disc.2009.02.024
[10] R. Sen Gupta, M.K. Sen and S. Ghosh, A variation of zero-divisor graphs, Discuss. Math. Gen. Algebra Appl. 35 (2015) 159–176. doi:10.7151/dmgaa.1238
[11] K. Samei, The zero divisor graph of a reduced ring, J. Pure App. Alg. 209 (2007) 813–821. doi:10.1016/j.jpaa.2006.08.008.
[12] S.K. Nimbhorkar, Coloring of Rickart *-rings, Trends in Theory of Rings and Modules, S. Tariq Rizvi and S.M.A. Zaidi (Eds.) Anamya Publishers (New Delhi 2005), 91–95.
[13] S.K. Nimbhorkar, M.P. Wasadikar and L. DeMeyer, Coloring of semilattices, Ars Comb. 12 (2007) 97–104.
[14] Avinash Patil and B.N. Waphare, On the Zero-divisor graph of Rickart *- rings, Asian-Eur. J. Math. 10 (2017) 1750015 (17 pages). doi:10.1142/S1793557117500152
[15] Avinash Patil, B.N. Waphare, V.V. Joshi and H.Y. Paurali, Zero-divisor graphs of lower dismantlable lattices -I, Math. Slovaca 67 (2017) 1–12.
[16] Avinash Patil, B.N. Waphare and V.V. Joshi, Zero-divisor graphs of lower dismantlable lattices -II, to appear in Math. Slovaca.
[17] Avinash Patil and B.N. Waphare, The zero-divisor graph of a ring with involution, J. Algebra Appl. (to appear).
[18] S.P. Redmond, The zero-divisor graph of a non-commutative ring, Int. J. Commut. Rings 1 (2002) 203–211.
[19] N.K. Thakare and S.K. Nimbhorkar, Prime strict ideals in Rickart *-rings, Ind. J. Pure appl. Math. 22 (1991) 63–72.
[20] D.B. West, Introduction to Graph Theory, Second Edition (Prentice-Hall of India, New Delhi, 2002).