Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2017_37_1_a1, author = {Cohen, Boaz}, title = {Generalized pell equations for 2 {\texttimes} 2 matrices}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {13--30}, publisher = {mathdoc}, volume = {37}, number = {1}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2017_37_1_a1/} }
Cohen, Boaz. Generalized pell equations for 2 × 2 matrices. Discussiones Mathematicae. General Algebra and Applications, Tome 37 (2017) no. 1, pp. 13-30. http://geodesic.mathdoc.fr/item/DMGAA_2017_37_1_a1/
[1] Z. Cao and A. Grytczuk, Fermat’s type equations in the set of 2×2 integral matrices, Tsukuba J. Math. 22 (1998) 637–643.
[2] A. Grytczuk and I. Kurzydło, On the matrix negative Pell equation, Discuss. Math. GAA 29 (2009) 35–45. doi:10.7151/dmgaa.1150
[3] K. Hoffman and R. Kunze, Linear Algebra, 2 ed. (Prentice Hall, Englewood Cliffs, New Jersey, 1971).
[4] H.W. Lenstra, Jr., Solving the Pell equation, Sci. Res. Inst. Publ. 44 (2008) 1–23.
[5] W.J. LeVeque, Topics in Number Theory, vol. 1, (Addison-Wesley Publishing Co., Reading Massachusetts, 1956).
[6] Ch. Li and M. Le, On Fermat’s equation in integral 2×2 matrices, Periodica Mathematica Hungarica 31 (1995) 219–222.
[7] R. Sawilla, A. Silvester and H.C. Williams, A new look at an old equation, Algorithmic Number Theory, proceedings of ANTS-VIII, Lecture Notes in Computer Science 5011 (2008) 39–59. doi:10.1007/978-3-540-79456-1_2
[8] L.N. Vaserstein, Non-commutative number theory in Algebraic K-theory and algebraic number theory, Amer. Math. Soc. 83 (1989) 445–449. doi: http://dx.doi.org/10.1090/conm/083
[9] W. Intrarapak and S. Prugsapitak, On some Diophantine problems in 2 × 2 integer matrices, ScienceAsia 39 (2013) 653–655. doi:10.2306/scienceasia1513-1874.2013.39.653