Generalized pell equations for 2 × 2 matrices
Discussiones Mathematicae. General Algebra and Applications, Tome 37 (2017) no. 1, pp. 13-30.

Voir la notice de l'article provenant de la source Library of Science

In this paper we consider the solutions of the generalized matrix Pell equations X2 − dY2 = cI, where X and Y are 2 × 2 matrices over ℤ, d is a non-zero (positive or negative) square-free integer, c is an arbitrary integer and I is the 2 × 2 identity matrix. We determine all solutions of such equations for c = ±1, as well as all non-commutative solutions for an arbitrary c.
Keywords: matrix equations, Pell equation
@article{DMGAA_2017_37_1_a1,
     author = {Cohen, Boaz},
     title = {Generalized pell equations for 2 {\texttimes} 2 matrices},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {13--30},
     publisher = {mathdoc},
     volume = {37},
     number = {1},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2017_37_1_a1/}
}
TY  - JOUR
AU  - Cohen, Boaz
TI  - Generalized pell equations for 2 × 2 matrices
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2017
SP  - 13
EP  - 30
VL  - 37
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2017_37_1_a1/
LA  - en
ID  - DMGAA_2017_37_1_a1
ER  - 
%0 Journal Article
%A Cohen, Boaz
%T Generalized pell equations for 2 × 2 matrices
%J Discussiones Mathematicae. General Algebra and Applications
%D 2017
%P 13-30
%V 37
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2017_37_1_a1/
%G en
%F DMGAA_2017_37_1_a1
Cohen, Boaz. Generalized pell equations for 2 × 2 matrices. Discussiones Mathematicae. General Algebra and Applications, Tome 37 (2017) no. 1, pp. 13-30. http://geodesic.mathdoc.fr/item/DMGAA_2017_37_1_a1/

[1] Z. Cao and A. Grytczuk, Fermat’s type equations in the set of 2×2 integral matrices, Tsukuba J. Math. 22 (1998) 637–643.

[2] A. Grytczuk and I. Kurzydło, On the matrix negative Pell equation, Discuss. Math. GAA 29 (2009) 35–45. doi:10.7151/dmgaa.1150

[3] K. Hoffman and R. Kunze, Linear Algebra, 2 ed. (Prentice Hall, Englewood Cliffs, New Jersey, 1971).

[4] H.W. Lenstra, Jr., Solving the Pell equation, Sci. Res. Inst. Publ. 44 (2008) 1–23.

[5] W.J. LeVeque, Topics in Number Theory, vol. 1, (Addison-Wesley Publishing Co., Reading Massachusetts, 1956).

[6] Ch. Li and M. Le, On Fermat’s equation in integral 2×2 matrices, Periodica Mathematica Hungarica 31 (1995) 219–222.

[7] R. Sawilla, A. Silvester and H.C. Williams, A new look at an old equation, Algorithmic Number Theory, proceedings of ANTS-VIII, Lecture Notes in Computer Science 5011 (2008) 39–59. doi:10.1007/978-3-540-79456-1_2

[8] L.N. Vaserstein, Non-commutative number theory in Algebraic K-theory and algebraic number theory, Amer. Math. Soc. 83 (1989) 445–449. doi: http://dx.doi.org/10.1090/conm/083

[9] W. Intrarapak and S. Prugsapitak, On some Diophantine problems in 2 × 2 integer matrices, ScienceAsia 39 (2013) 653–655. doi:10.2306/scienceasia1513-1874.2013.39.653