A short note on $L_{CBA}$ - fuzzy logic with a non-associative conjunction
Discussiones Mathematicae. General Algebra and Applications, Tome 36 (2016) no. 1, pp. 113-116.

Voir la notice de l'article provenant de la source Library of Science

We significantly simplify the axiomatic system L_CBA for fuzzy logic with a non-associative conjunction.
Keywords: axiomatic system, non-associativity, fuzzy logic
@article{DMGAA_2016_36_1_a8,
     author = {Kola\v{r}{\'\i}k, Miroslav},
     title = {A short note on $L_{CBA}$ - fuzzy logic with a non-associative conjunction},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {113--116},
     publisher = {mathdoc},
     volume = {36},
     number = {1},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2016_36_1_a8/}
}
TY  - JOUR
AU  - Kolařík, Miroslav
TI  - A short note on $L_{CBA}$ - fuzzy logic with a non-associative conjunction
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2016
SP  - 113
EP  - 116
VL  - 36
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2016_36_1_a8/
LA  - en
ID  - DMGAA_2016_36_1_a8
ER  - 
%0 Journal Article
%A Kolařík, Miroslav
%T A short note on $L_{CBA}$ - fuzzy logic with a non-associative conjunction
%J Discussiones Mathematicae. General Algebra and Applications
%D 2016
%P 113-116
%V 36
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2016_36_1_a8/
%G en
%F DMGAA_2016_36_1_a8
Kolařík, Miroslav. A short note on $L_{CBA}$ - fuzzy logic with a non-associative conjunction. Discussiones Mathematicae. General Algebra and Applications, Tome 36 (2016) no. 1, pp. 113-116. http://geodesic.mathdoc.fr/item/DMGAA_2016_36_1_a8/

[1] M. Botur and R. Halaš, Commutative basic algebras and non-associative fuzzy logics, Arch. Math. Logic 48 (2009), 243-255. doi: 10.1007/s00153-009-0125-7

[2] M. Botur, I. Chajda, R. Halaš, J. Kühr and J. Paseka, Algebraic Methods in Quantum Logic (Palacky University, Olomouc, 2014), 200 pages, ISBN 978-80-244-4166-5.

[3] P. Cintula, Short note: on the redundancy of axiom (A3) in BL and MTL, Soft Computing 9 (2005), 942-942. doi: 10.1007/s00500-004-0445-9

[4] P. Hájek, Metamathematics of Fuzzy Logic, vol. 4 of Trends in Logic (Dordercht, Kluwer, 1998), 299 pages, ISBN 978-94-011-5300-3.

[5] P. Hájek and R. Mesiar, On copulas, quasicopulas and fuzzy logic, Soft Computing 12 (2008), 1239-1243. doi: 10.1007/s00500-008-0286-z

[6] V. Kreinovich, Towards more realistic (e.g. non-associative) 'and'- and 'or'-operations in fuzzy logic, Soft Computing 8 (2004), 274-280. doi: 10.1007/s00500-003-0272-4

[7] S. Lehmke, Fun with automated proof search in basic propositional fuzzy logic, Abstracts of the Seventh International Conference FSTA 2004 (P.E. Klement, R. Mesiar, E. Drobná and F. Chovanec, eds.), (Liptovský Mikuláš), 2004, 78-80.

[8] R.B. Nelsen, An Introduction to Copulas (Springer-Verlag, New York, 2006), 286 pages, ISBN 978-0-387-28659-4.

[9] R.R. Yager, Modelling holistic fuzzy implication using co-copulas, Fuzzy Optim. Decis. Making 5 (2006), 207-226. doi: 10.1007/s10700-006-0011-2

[10] H.H. Zimmerman and P. Zysno, Latent connectives in human decision making, Fuzzy Sets and Systems 4 (1980), 37-51. doi: 10.1016/0165-0114(80)90062-7