On centralizer of semiprime inverse semiring
Discussiones Mathematicae. General Algebra and Applications, Tome 36 (2016) no. 1, pp. 71-84.

Voir la notice de l'article provenant de la source Library of Science

Let S be 2-torsion free semiprime inverse semiring satisfying A₂ condition of Bandlet and Petrich [1]. We investigate, when an additive mapping T on S becomes centralizer.
Keywords: inverse semiring, semiprime inverse semiring, commutators, left(right) centralizer
@article{DMGAA_2016_36_1_a5,
     author = {Sara, S. and Aslam, M. and Javed, M.},
     title = {On centralizer of semiprime inverse semiring},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {71--84},
     publisher = {mathdoc},
     volume = {36},
     number = {1},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2016_36_1_a5/}
}
TY  - JOUR
AU  - Sara, S.
AU  - Aslam, M.
AU  - Javed, M.
TI  - On centralizer of semiprime inverse semiring
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2016
SP  - 71
EP  - 84
VL  - 36
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2016_36_1_a5/
LA  - en
ID  - DMGAA_2016_36_1_a5
ER  - 
%0 Journal Article
%A Sara, S.
%A Aslam, M.
%A Javed, M.
%T On centralizer of semiprime inverse semiring
%J Discussiones Mathematicae. General Algebra and Applications
%D 2016
%P 71-84
%V 36
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2016_36_1_a5/
%G en
%F DMGAA_2016_36_1_a5
Sara, S.; Aslam, M.; Javed, M. On centralizer of semiprime inverse semiring. Discussiones Mathematicae. General Algebra and Applications, Tome 36 (2016) no. 1, pp. 71-84. http://geodesic.mathdoc.fr/item/DMGAA_2016_36_1_a5/

[1] H.J. Bandlet and M. Petrich, Subdirect products of rings and distrbutive lattics, Proc. Edin Math. Soc. 25 (1982), 135-171. doi: 10.1017/s0013091500016643

[2] M. Bresar and Borut Zalar, On the structure of Jordan *-derivations, Colloq. Math. 63 (2) (1992) http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0786.46045, 163-171.

[3] J.S. Golan, The theory of semirings with applications in mathematics and theoretical computer science (John Wiley and Sons. Inc., New York, 1992). doi: 10.1007/978-94-015-9333-5_-13

[4] M.A Javed, M. Aslam and M. Hussain, On condition (A₂) of Bandlet and Petrich for inverse Semirings, Int. Mathematical Forum 7 (59) (2012) http://www.m-hikari.com/imf/imf-2012/57-60-2012/aslamIMF57-60-2012.pdf, 2903-2914.

[5] U. Habisch and H.J. Weinert, Semirings-Algebraic theory and applications in computer science (World Scientific, 1993). doi: 10.1142/3903

[6] P.H. Karvellas, Inversive semirings, J. Austral. Math. Soc. 18 (1974), 277-288. doi: 10.1017/s1446788700022850

[7] V.J Khanna, Lattices and Boolean Algebras (Vikas Publishing House Pvt. Ltd., 2004).

[8] M.K. Sen, S.K. Maity and K.P Shum, Clifford semirings and generalized clifford semirings, Taiwanese J. Math. 9 (2005) http://journal.tms.org.tw/index.php/TJM/article/view/1014, 433-444.

[9] M.K. Sen and S.K. Maity, Regular additively inverse semirings, Acta Math. Univ. Comenianae 1 (2006) http://eudml.org/doc/129834, 137-146.

[10] J. Vukman, Centralizers of semiprime rings, Comment. Math. Univ. Carolinae 42 (2001) http://hdl.handle.net/10338.dmlcz/118920, 101-108.

[11] J. Vukman, Jordan left derivation on semiprime rings, Math. Jour. Okayama Univ. 39 (1997) http://www.math.okayama-u.ac.jp/mjou/mjou1-46/mjou_pdf/mjou_39/mjou_39_001.pdf, 1-6.

[12] B. Zalar, On centralizers of semiprime rings, Comment. Math. Univ. Carolinae 32 (1991)http://hdl.handle.net/10338.dmlcz/118440, 609-614.