Quasiorder lattices are five-generated
Discussiones Mathematicae. General Algebra and Applications, Tome 36 (2016) no. 1, pp. 59-70.

Voir la notice de l'article provenant de la source Library of Science

A quasiorder (relation), also known as a preorder, is a reflexive and transitive relation. The quasiorders on a set A form a complete lattice with respect to set inclusion. Assume that A is a set such that there is no inaccessible cardinal less than or equal to |A|; note that in Kuratowski's model of ZFC, all sets A satisfy this assumption. Generalizing the 1996 result of Ivan Chajda and Gábor Czéedli, also Tamás Dolgos' recent achievement, we prove that in this case the lattice of quasiorders on A is five-generated, as a complete lattice.
Keywords: quasiorder lattice, preorder lattice, accessible cardinal
@article{DMGAA_2016_36_1_a4,
     author = {Kulin, J\'ulia},
     title = {Quasiorder lattices are five-generated},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {59--70},
     publisher = {mathdoc},
     volume = {36},
     number = {1},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2016_36_1_a4/}
}
TY  - JOUR
AU  - Kulin, Júlia
TI  - Quasiorder lattices are five-generated
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2016
SP  - 59
EP  - 70
VL  - 36
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2016_36_1_a4/
LA  - en
ID  - DMGAA_2016_36_1_a4
ER  - 
%0 Journal Article
%A Kulin, Júlia
%T Quasiorder lattices are five-generated
%J Discussiones Mathematicae. General Algebra and Applications
%D 2016
%P 59-70
%V 36
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2016_36_1_a4/
%G en
%F DMGAA_2016_36_1_a4
Kulin, Júlia. Quasiorder lattices are five-generated. Discussiones Mathematicae. General Algebra and Applications, Tome 36 (2016) no. 1, pp. 59-70. http://geodesic.mathdoc.fr/item/DMGAA_2016_36_1_a4/

[1] G. Czédli, A Horn sentence for involution lattices of quasiorders, Order 11 (1994), 391-395. doi: 10.1007/BF01108770

[2] I. Chajda and G. Czédli, How to generate the involution lattice of quasiorders, Studia Sci. Math. Hungar. 32 (1996), 415-427.

[3] G. Czédli, Four-generated large equivalence lattices, Acta Sci. Math. 62 (1996), 47-69.

[4] G. Czédli, Lattice generation of small equivalences of a countable set, Order 13 (1996), 11-16. doi: 10.1007/BF00383964

[5] G. Czédli, (1+1+2)-generated equivalence lattices, J. Algebra 221 (1999), 439-462. doi: 10.1006/jabr.1999.8003

[6] T. Dolgos, Generating equivalence and quasiorder lattices over finite sets (in Hungarian) BSc Thesis, University of Szeged (2015).

[7] K. Kuratowski, Sur l'état actuel de l'axiomatique de la théorie des ensembles, Ann. Soc. Polon. Math. 3 (1925), 146-147.

[8] A. Levy, Basic Set Theory (Springer-Verlag, Berlin-Heidelberg-New York, 1979). doi: 10.1007/978-3-662-02308-2

[9] H. Strietz, Finite partition lattices are four-generated, Proc. Lattice Th. Conf. Ulm (1975), 257-259.

[10] H. Strietz, Über Erzeugendenmengen endlicher Partitionverbände, Studia Sci. Math. Hungar. 12 (1977), 1-17.

[11] G. Takách, Three-generated quasiorder lattices, Discuss. Math. Algebra and Stochastic Methods 16 (1996), 81-98.

[12] J. Tůma, On the structure of quasi-ordering lattices, Acta Universitatis Carolinae, Mathematica et Physica 43 (2002). doi: 65-74

[13] L. Zádori, Generation of finite partition lattices, Lectures in Universal Algebra, Colloquia Math. Soc. J. Bolyai 43 Proc. Conf. Szeged (1983) 573-586 (North Holland, Amsterdam-Oxfor.