Quasiorder lattices are five-generated
Discussiones Mathematicae. General Algebra and Applications, Tome 36 (2016) no. 1, pp. 59-70

Voir la notice de l'article provenant de la source Library of Science

A quasiorder (relation), also known as a preorder, is a reflexive and transitive relation. The quasiorders on a set A form a complete lattice with respect to set inclusion. Assume that A is a set such that there is no inaccessible cardinal less than or equal to |A|; note that in Kuratowski's model of ZFC, all sets A satisfy this assumption. Generalizing the 1996 result of Ivan Chajda and Gábor Czéedli, also Tamás Dolgos' recent achievement, we prove that in this case the lattice of quasiorders on A is five-generated, as a complete lattice.
Keywords: quasiorder lattice, preorder lattice, accessible cardinal
@article{DMGAA_2016_36_1_a4,
     author = {Kulin, J\'ulia},
     title = {Quasiorder lattices are five-generated},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {59--70},
     publisher = {mathdoc},
     volume = {36},
     number = {1},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2016_36_1_a4/}
}
TY  - JOUR
AU  - Kulin, Júlia
TI  - Quasiorder lattices are five-generated
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2016
SP  - 59
EP  - 70
VL  - 36
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2016_36_1_a4/
LA  - en
ID  - DMGAA_2016_36_1_a4
ER  - 
%0 Journal Article
%A Kulin, Júlia
%T Quasiorder lattices are five-generated
%J Discussiones Mathematicae. General Algebra and Applications
%D 2016
%P 59-70
%V 36
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2016_36_1_a4/
%G en
%F DMGAA_2016_36_1_a4
Kulin, Júlia. Quasiorder lattices are five-generated. Discussiones Mathematicae. General Algebra and Applications, Tome 36 (2016) no. 1, pp. 59-70. http://geodesic.mathdoc.fr/item/DMGAA_2016_36_1_a4/