Applications of saddle-point determinants
Discussiones Mathematicae. General Algebra and Applications, Tome 35 (2015) no. 2, pp. 213-220.

Voir la notice de l'article provenant de la source Library of Science

For a given square matrix A ∈ M_n(ℝ) and the vector e ∈ (ℝ)^n of ones denote by (A,e) the matrix
Keywords: bimatrix game, Mean Value Theorem, optimal mixed strategies, saddle point matrix, value of a game, volumes of simplices
@article{DMGAA_2015_35_2_a7,
     author = {Hauke, Jan and Johnson, Charles and Ostrowski, Tadeusz},
     title = {Applications of saddle-point determinants},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {213--220},
     publisher = {mathdoc},
     volume = {35},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2015_35_2_a7/}
}
TY  - JOUR
AU  - Hauke, Jan
AU  - Johnson, Charles
AU  - Ostrowski, Tadeusz
TI  - Applications of saddle-point determinants
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2015
SP  - 213
EP  - 220
VL  - 35
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2015_35_2_a7/
LA  - en
ID  - DMGAA_2015_35_2_a7
ER  - 
%0 Journal Article
%A Hauke, Jan
%A Johnson, Charles
%A Ostrowski, Tadeusz
%T Applications of saddle-point determinants
%J Discussiones Mathematicae. General Algebra and Applications
%D 2015
%P 213-220
%V 35
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2015_35_2_a7/
%G en
%F DMGAA_2015_35_2_a7
Hauke, Jan; Johnson, Charles; Ostrowski, Tadeusz. Applications of saddle-point determinants. Discussiones Mathematicae. General Algebra and Applications, Tome 35 (2015) no. 2, pp. 213-220. http://geodesic.mathdoc.fr/item/DMGAA_2015_35_2_a7/

[1] R. Almeida, A mean value theorem for internal functions and an estimation for the differential mean point, Novi Sad J. Math. 38 (2) (2008), 57-64. doi: 10.1.1.399.9060

[2] M. Benzi, G.H. Golub and J. Liesen, Numerical solution of saddle point problems, Acta Numerica 14 (2005), 1-137. doi: 10.1017/S0962492904000212

[3] I.M. Bomze, On standard quadratic optimization problems, J. Global Optimization, 13 (1998), 369-387. doi: 10.1023/A:1008369322970

[4] R.H. Buchholz, Perfect pyramids, Bull. Austral. Math. Soc. 45 (1992), 353-368. doi: 10.1017/S0004972700030252

[5] H.S.M. Coxeter and S.L. Greitzer, Geometry Revisited, Washington, DC, Math. Assoc. Amer. 59 (1967), 117-119.

[6] H. Diener and I. Loeb, Constructive reverse investigations into differential equations, J. Logic and Analysis 3 (8) (2011), 1-26. doi: 10.4115/jla.2011.3.8

[7] W. Dunham, Heron's formula for triangular area, Ch. 5, Journey through Genius: The Great Theorems of Mathematics (New York, Wiley, 1990), 113-132.

[8] M. Griffiths, n-dimensional enrichment for further mathematicians, The Mathematical Gazette 89 (516) (2005), 409-416. doi: 10.2307/3621932

[9] M. Kline, Mathematical Thought from Ancient to Modern Times (Oxford, England, Oxford University Press, 1990).

[10] MathPages, Heron's Formula and Brahmagupta's Generalization, http://www.mathpages.com/home/kmath196.htm.

[11] K. Menger, Untersuehungen über allgemeine metrik, Math. Ann. 100 (1928), 75-165. doi: 10.1007/BF01448840

[12] T. Ostrowski, Population equilibrium with support in evolutionary matrix games, Linear Alg. Appl. 417 (2006), 211-219. doi: 10.1016/j.laa.2006.03.039

[13] T. Ostrowski, On some properties of saddle point matrices with vector blocks, Inter. J. Algebra 1 (2007), 129-138. doi: 10.1.1.518.8476

[14] G. Owen, Game Theory, Emerald Group Publishing, 2013.