Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2015_35_2_a7, author = {Hauke, Jan and Johnson, Charles and Ostrowski, Tadeusz}, title = {Applications of saddle-point determinants}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {213--220}, publisher = {mathdoc}, volume = {35}, number = {2}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2015_35_2_a7/} }
TY - JOUR AU - Hauke, Jan AU - Johnson, Charles AU - Ostrowski, Tadeusz TI - Applications of saddle-point determinants JO - Discussiones Mathematicae. General Algebra and Applications PY - 2015 SP - 213 EP - 220 VL - 35 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2015_35_2_a7/ LA - en ID - DMGAA_2015_35_2_a7 ER -
%0 Journal Article %A Hauke, Jan %A Johnson, Charles %A Ostrowski, Tadeusz %T Applications of saddle-point determinants %J Discussiones Mathematicae. General Algebra and Applications %D 2015 %P 213-220 %V 35 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGAA_2015_35_2_a7/ %G en %F DMGAA_2015_35_2_a7
Hauke, Jan; Johnson, Charles; Ostrowski, Tadeusz. Applications of saddle-point determinants. Discussiones Mathematicae. General Algebra and Applications, Tome 35 (2015) no. 2, pp. 213-220. http://geodesic.mathdoc.fr/item/DMGAA_2015_35_2_a7/
[1] R. Almeida, A mean value theorem for internal functions and an estimation for the differential mean point, Novi Sad J. Math. 38 (2) (2008), 57-64. doi: 10.1.1.399.9060
[2] M. Benzi, G.H. Golub and J. Liesen, Numerical solution of saddle point problems, Acta Numerica 14 (2005), 1-137. doi: 10.1017/S0962492904000212
[3] I.M. Bomze, On standard quadratic optimization problems, J. Global Optimization, 13 (1998), 369-387. doi: 10.1023/A:1008369322970
[4] R.H. Buchholz, Perfect pyramids, Bull. Austral. Math. Soc. 45 (1992), 353-368. doi: 10.1017/S0004972700030252
[5] H.S.M. Coxeter and S.L. Greitzer, Geometry Revisited, Washington, DC, Math. Assoc. Amer. 59 (1967), 117-119.
[6] H. Diener and I. Loeb, Constructive reverse investigations into differential equations, J. Logic and Analysis 3 (8) (2011), 1-26. doi: 10.4115/jla.2011.3.8
[7] W. Dunham, Heron's formula for triangular area, Ch. 5, Journey through Genius: The Great Theorems of Mathematics (New York, Wiley, 1990), 113-132.
[8] M. Griffiths, n-dimensional enrichment for further mathematicians, The Mathematical Gazette 89 (516) (2005), 409-416. doi: 10.2307/3621932
[9] M. Kline, Mathematical Thought from Ancient to Modern Times (Oxford, England, Oxford University Press, 1990).
[10] MathPages, Heron's Formula and Brahmagupta's Generalization, http://www.mathpages.com/home/kmath196.htm.
[11] K. Menger, Untersuehungen über allgemeine metrik, Math. Ann. 100 (1928), 75-165. doi: 10.1007/BF01448840
[12] T. Ostrowski, Population equilibrium with support in evolutionary matrix games, Linear Alg. Appl. 417 (2006), 211-219. doi: 10.1016/j.laa.2006.03.039
[13] T. Ostrowski, On some properties of saddle point matrices with vector blocks, Inter. J. Algebra 1 (2007), 129-138. doi: 10.1.1.518.8476
[14] G. Owen, Game Theory, Emerald Group Publishing, 2013.